def test_manifest_func(): x = Array([1, 2, 3]) y = Array([1, 2, 3]) val = add(x, y) assert val[0] == 2 assert val[1] == 4 assert val[2] == 6
def test_all_construct(): # Assert that the pretty pritner works for all of the # toplevel structures expected_ds = dshape('3, int') a = NDArray([1,2,3]) str(a) repr(a) a.datashape._equal(expected_ds) a = Array([1,2,3]) str(a) repr(a) a.datashape._equal(expected_ds) a = NDTable([(1, 1)]) str(a) repr(a) #a.datashape._equal(expected_ds) a = Table([(1, 1)]) str(a) repr(a)
def test_getitem_nd(): # create nd = ndarr() barray = Array(nd) # read data = barray[:] assert np.all(data == nd)
def test_simple_persistence(): import tempfile, shutil, os.path import numpy as np from blaze import Array, dshape, params ds = dshape('2, 2, float64') data = np.zeros(4).reshape(2,2) td = tempfile.mkdtemp() tmppath = os.path.join(td, 'a') a = Array([1,2,3,4], ds, params=params(storage=tmppath)) # Remove everything under the temporary dir shutil.rmtree(td)
def dd_as_py(dd): """ Converts the data in a data descriptor into Python types. This uses the data_descriptor iteration methods, so is not expected to be fast. Its main initial purpose is to assist with writing unit tests. """ # TODO: This function should probably be removed. if not isinstance(dd, IDataDescriptor): raise TypeError('expected DataDescriptor, got %r' % type(dd)) if isinstance(dd, BLZDataDescriptor): return [dd_as_py(child_dd) for child_dd in dd] if dd.capabilities.deferred: from blaze import Array, eval dd = eval(Array(dd))._data return nd.as_py(dd.dynd_arr())
def test_getitem_nd_persistent(): import tempfile, shutil, os.path td = tempfile.mkdtemp() path = os.path.join(td, 'test.blz') # write bparams = params(storage=path, clevel=6) nd = ndarr() barray = Array(nd, params=bparams) # read arr = open(path) data = arr[:] assert np.all(data == nd) shutil.rmtree(td)
def arr(): return Array([1, 2, 3], '3, int32')
def test_simple_session(): from blaze import Array, dshape ds = dshape('2, 2, int') a = Array([1,2,3,4], ds)