Esempio n. 1
0
 def setUp(self):
     np.random.seed(1)
     self.A = np.random.uniform(0, 1, size=(20, 10))
     self.b = np.random.uniform(0, 1, size=20)
     prob = blitzml.LassoProblem(self.A, self.b)
     self.lam = 0.02 * prob.compute_max_l1_penalty()
     self.sol = prob.solve(self.lam)
Esempio n. 2
0
 def test_sparse_linear_lambda_max_basic(self):
     A = np.array([[1, -2], [1, 0]]).T
     b = np.array([3, -1])
     prob = blitzml.LassoProblem(A, b)
     lammax = prob.compute_max_l1_penalty()
     self.assertEqual(lammax, 6.0)
     lammax2 = prob.compute_max_l1_penalty(include_bias_term=False)
     self.assertEqual(lammax2, 5.0)
Esempio n. 3
0
 def test_lasso_empty(self):
     A = sp.csc_matrix((100, 1000))
     b = np.ones(100)
     with captured_output() as out:
         prob = blitzml.LassoProblem(A, b)
     self.assertEqual(prob.compute_max_l1_penalty(), 0.)
     sol = prob.solve(0.)
     self.assertEqual(np.linalg.norm(sol.weights), 0.)
     self.assertEqual(sol.bias, 1.0)
     self.assertEqual(sol.objective_value, 0.)
     self.assertEqual(sol.duality_gap, 0.)
Esempio n. 4
0
 def test_lasso_bad_initial_conditions(self):
   n = 6
   d = 4
   A = np.arange(n * d).reshape(n, d)
   b = np.arange(n)
   prob = blitzml.LassoProblem(A, b)
   lammax = prob.compute_max_l1_penalty()
   weights0 = -100 * np.arange(d)
   lam = 0.02 * lammax
   sol = prob.solve(lam, initial_weights=weights0, stopping_tolerance=1e-5)
   self.assertEqual(is_solution(sol, A, b, lam), True)
Esempio n. 5
0
 def test_lasso_good_initial_conditions(self):
     n = 7
     d = 30
     np.random.seed(0)
     A = np.random.randn(n, d)
     b = np.random.randn(n)
     prob = blitzml.LassoProblem(A, b)
     lammax = prob.compute_max_l1_penalty()
     lam = 0.005 * lammax
     sol0 = prob.solve(lam, stopping_tolerance=1e-5)
     sol = prob.solve(lam, initial_weights=sol0.weights, max_time=-1.0)
     self.assertEqual(is_solution(sol, A, b, lam), True)
Esempio n. 6
0
 def test_lasso_empty_cols(self):
     np.random.seed(1)
     A = np.random.randn(20, 30)
     A[:, 0] = 0.
     A[:, 10] = 0.
     A[:, 29] = 0.
     A_sparse = sp.csc_matrix(A)
     b = np.random.randn(20)
     prob = blitzml.LassoProblem(A_sparse, b)
     lammax = prob.compute_max_l1_penalty()
     lam = 0.05 * lammax
     sol = prob.solve(lam, stopping_tolerance=1e-5)
     self.assertEqual(is_solution(sol, A, b, lam), True)
Esempio n. 7
0
 def setUp(self):
     A = np.array([[2]], dtype=np.float)
     b = np.array([10], dtype=np.double)
     with captured_output() as out:
         self.prob = blitzml.LassoProblem(A, b)
Esempio n. 8
0
 def test_lasso_csr_matrix_warning(self):
     self.A = sp.csr_matrix(self.A)
     with captured_output() as out:
         prob = blitzml.LassoProblem(self.A, self.b)
     message = out[0]
     self.assertTrue("Warning" in message)
Esempio n. 9
0
 def test_lasso_dense_copy_warning_F_contiguous(self):
     self.A = np.asfortranarray(self.A)
     with captured_output() as out:
         prob = blitzml.LassoProblem(self.A, self.b)
     message = out[0]
     self.assertTrue("Warning" not in message)
Esempio n. 10
0
 def setUp(self):
     A = np.arange(20).reshape(5, 4)
     b = np.arange(5).astype(np.float64)
     self.prob = blitzml.LassoProblem(A, b)