def extract_candidates(predictions_scan, annotations, tf_matrix, pid, outputs_path):
    print 'computing blobs'
    start_time = time.time()
    blobs = blobs_detection.blob_dog(predictions_scan[0, 0], min_sigma=1, max_sigma=15, threshold=0.1)
    print 'blobs computation time:', (time.time() - start_time) / 60.

    print 'n_blobs detected', len(blobs)
    correct_blobs_idxs = []
    for zyxd in annotations:
        r = zyxd[-1] / 2.
        distance2 = ((zyxd[0] - blobs[:, 0]) ** 2
                     + (zyxd[1] - blobs[:, 1]) ** 2
                     + (zyxd[2] - blobs[:, 2]) ** 2)
        blob_idx = np.argmin(distance2)
        print 'node', zyxd
        print 'closest blob', blobs[blob_idx]
        if distance2[blob_idx] <= r ** 2:
            correct_blobs_idxs.append(blob_idx)
        else:
            print 'not detected !!!'

    # we will save blobs the the voxel space of the original image
    # blobs that are true detections will have blobs[-1] = 1 else 0
    blobs_original_voxel_coords = []
    for j in xrange(blobs.shape[0]):
        blob_j = np.append(blobs[j, :3], [1])
        blob_j_original = tf_matrix.dot(blob_j)
        blob_j_original[-1] = 1 if j in correct_blobs_idxs else 0
        if j in correct_blobs_idxs:
            print 'blob in original', blob_j_original
        blobs_original_voxel_coords.append(blob_j_original)

    blobs = np.asarray(blobs_original_voxel_coords)
    utils.save_pkl(blobs, outputs_path + '/%s.pkl' % pid)
Esempio n. 2
0
def extract_candidates(predictions_scan, tf_matrix, pid, outputs_path):
    print 'computing blobs'
    start_time = time.time()
    blobs = blobs_detection.blob_dog(predictions_scan[0, 0], min_sigma=1, max_sigma=15, threshold=0.1)
    print 'blobs computation time:', (time.time() - start_time) / 60.
    print 'n blobs detected:', blobs.shape[0]

    blobs_original_voxel_coords = []
    for j in xrange(blobs.shape[0]):
        blob_j = np.append(blobs[j, :3], [1])
        blob_j_original = tf_matrix.dot(blob_j)
        blobs_original_voxel_coords.append(blob_j_original)

    blobs = np.asarray(blobs_original_voxel_coords)
    print blobs.shape
    utils.save_pkl(blobs, outputs_path + '/%s.pkl' % pid)
Esempio n. 3
0
def extract_candidates(predictions_scan, tf_matrix, pid, outputs_path):
    print 'computing blobs'
    start_time = time.time()
    blobs = blobs_detection.blob_dog(predictions_scan[0, 0], min_sigma=1, max_sigma=15, threshold=0.1)
    print 'blobs computation time:', (time.time() - start_time) / 60.
    print 'n blobs detected:', blobs.shape[0]

    blobs_original_voxel_coords = []
    for j in xrange(blobs.shape[0]):
        blob_j = np.append(blobs[j, :3], [1])
        blob_j_original = tf_matrix.dot(blob_j)
        blobs_original_voxel_coords.append(blob_j_original)

    blobs = np.asarray(blobs_original_voxel_coords)
    print blobs.shape
    utils.save_pkl(blobs, outputs_path + '/%s.pkl' % pid)
Esempio n. 4
0
    def notateProcessor(self, notateQueue):
        while True:
            # get crop from queue
            crop = notateQueue.get()

            # blobs detection
            image = exposure.equalize_hist(crop["image"])
            print("notateProcessor", image.shape)
            blobs = blobs_detection.blob_dog(image, threshold=0.3)

            # get radius of blobs - now we have notation
            notationList = np.zeros(blobs.shape)
            for i in range(len(blobs)):
                notationList[i] = self.calcRadius(blobs[i])

            # get prob - now we have notation
            notations = []
            for i in range(len(notationList)):
                probCube = crop["image"]
                note = notationList[i]
                z = int(note[0])
                y = int(note[1])
                x = int(note[2])
                prob = probCube[z][y][x] / 2
                r = note[3]
                notation = np.array([z, y, x, r, prob])
                notations.append(notation)

            # get world coords
            position = crop["position"]
            metaFilename = crop["seriesuid"] + ".npy"

            meta = self.serializer.readFromNpy("meta/", metaFilename)
            worldCoord = meta["worldOrigin"]
            steps = meta["steps"]

            for i in range(len(notations)):
                notations[i] = self.calcOffset(notations[i], position, steps)
                notations[i] = self.calcWorldCoord(notations[i], worldCoord)

            # write to disk
            print("notateProcessor", crop["seriesuid"], crop["number"])
            self.serializer.writeToNpy(
                "notates/", "{0}-{1}.npy".format(crop["seriesuid"],
                                                 crop["number"]), notations)
Esempio n. 5
0
    def notate(self):
        csvPath = self.dataPath + self.phaseSubPath + "csv/"
        if not os.path.isdir(csvPath):
            os.makedirs(csvPath)

        with open(csvPath + "annotation.csv", "w") as file:
            file.write("seriesuid,coordX,coordY,coordZ,diameter_mm\n")

        with open(csvPath + "seriesuids.csv", "w") as file:
            file.write("seriesuid\n")

        pathList = glob(self.dataPath + self.phaseSubPath + "concat/*.npy")
        for path in enumerate(tqdm(pathList)):
            filename = os.path.basename(path[1])
            seriesuid = filename.split(".")[0]
            print(seriesuid)

            data = self.serializer.readFromNpy("concat/", filename)
            data = np.squeeze(data)

            # notation filter with lung mask
            mask = self.serializer.readFromNpy("mask/", filename)
            data = data * mask

            # blob dectection
            data = exposure.equalize_hist(data)
            blobs = blobs_detection.blob_dog(data,
                                             threshold=0.3,
                                             min_sigma=self.sqrt3)
            # blobs = feature.blob_dog(data, threshold = 0.3)
            # blobs = feature.blob_log(data)
            # blobs = feature.blob_doh(data)

            # get radius of blobs - now we have notation
            notations = np.zeros(blobs.shape)
            for i in range(len(blobs)):
                notations[i] = self.calcRadius(blobs[i])

            print(notations)
            print(len(notations))

            # convert to world coord
            mhdFile = os.path.join(self.dataPath, self.phaseSubPath, "raw/",
                                   seriesuid + ".mhd")
            rawImage = sitk.ReadImage(mhdFile)
            worldOrigin = np.array(rawImage.GetOrigin())[::-1]
            for i in range(len(notations)):
                notations[i] = self.calcWorldCoord(notations[i], worldOrigin)

            # write notations to csv
            csvPath = self.dataPath + self.phaseSubPath + "csv/"
            if not os.path.isdir(csvPath):
                os.makedirs(csvPath)

            with open(csvPath + "annotation.csv", "w+") as file:
                file.write("seriesuid,coordX,coordY,coordZ,diameter_mm\n")
                for i in range(len(notations)):
                    line = "{0},{1},{2},{3},{4}\n".format(
                        seriesuid, notations[i][2], notations[i][1],
                        notations[i][0], notations[i][3] * 2.0)
                    file.write(line)

            with open(csvPath + "seriesuids.csv", "w+") as file:
                file.write("seriesuid")
                for i in range(len(notations)):
                    file.write(seriesuid)