class EpochAveraging(Block):

    family = 'PreProcessing'
    name = 'EpochAveraging'

    def __init__(self):
        self.epochs = BlockInput(
            name='Epochs',
            min_cardinality=1,
            max_cardinality=1,
            attribute_type=ParameterType.EPOCHS
        )
        self.epochs_output = BlockOutput(
            name='Epochs',
            min_cardinality=1,
            max_cardinality=100,
            attribute_type=ParameterType.EPOCHS
        )

    def input_params(self,data):
        self.epochs.set_value(data['Epochs'])

    def execute(self):
        avgepoch = self.epochs.value.average()
        self.epochs_output.set_value(avgepoch)
        return None
Esempio n. 2
0
class Subtraction(Block):

    family = 'AddSub'
    name = 'Subtraction'

    def __init__(self):
        self.num1 = BlockInput(name='num1',
                               min_cardinality=1,
                               max_cardinality=1,
                               attribute_type=ParameterType.NUMBER)
        self.num2 = BlockInput(name='num2',
                               min_cardinality=1,
                               max_cardinality=1,
                               attribute_type=ParameterType.NUMBER)
        self.output = BlockOutput(name='output',
                                  min_cardinality=1,
                                  max_cardinality=1,
                                  attribute_type=ParameterType.NUMBER)

    def input_params(self, data):
        self.num1.set_value(data['num1'])
        self.num2.set_value(data['num2'])

    def execute(self):
        value = self.num1.value - self.num2.value
        self.output.set_value(value)
        return (value, 'STRING')
Esempio n. 3
0
class EEGPlot(Block):

    family = 'Visualization'
    name = 'EEGPlot'

    def __init__(self):
        self.eeg_data = BlockInput(name='EEGData',
                                   min_cardinality=1,
                                   max_cardinality=1,
                                   attribute_type=ParameterType.EEGDATA)

    def input_params(self, data):
        self.eeg_data.set_value(data['EEGData'])

    def execute(self):
        value = self.eeg_data.value
        channels = value.ch_names

        time = value.times
        plt.figure(figsize=(18, 7))
        data = value.get_data()
        for i in range(data.shape[0]):
            plt.plot(time, np.array(data[i:i + 1, :]).flatten())
            print(channels[i])
        plt.legend(channels)
        plt.xlabel('Time (s)')
        plt.ylabel('EEG Amplitude')
        plt.title('EEG Data of channel/s: {}'.format(value.ch_names))
        plt.grid()
        return (None, 'GRAPH')
Esempio n. 4
0
class EpochPlot(Block):

    family = 'Visualization'
    name = 'EpochPlot'

    def __init__(self):
        self.epochs = BlockInput(name='Epochs',
                                 min_cardinality=1,
                                 max_cardinality=1,
                                 attribute_type=ParameterType.EPOCHS)

    def input_params(self, data):
        self.epochs.set_value(data['Epochs'])

    def execute(self):
        epochs = self.epochs.value
        if (epochs.__class__.__name__ == 'Epochs'):
            plot = epochs.plot_image(picks=None,
                                     cmap='interactive',
                                     sigma=1.,
                                     combine='mean',
                                     show=False)
            return (plot[0], 'GRAPH')
        elif (epochs.__class__.__name__ == 'EvokedArray'):
            plot = epochs.plot_image(picks=None,
                                     cmap='interactive',
                                     show=False)
            return (plot, 'GRAPH')
        return None
Esempio n. 5
0
class WaveletTransform(Block):

    family = 'FeatureExtraction'
    name = 'WaveletTransform'

    def __init__(self):
        self.epochs = BlockInput(name='Epochs',
                                 min_cardinality=1,
                                 max_cardinality=1,
                                 attribute_type=ParameterType.EPOCHS)
        self.feature_vector = BlockOutput(
            name='FeatureVector',
            min_cardinality=1,
            max_cardinality=100,
            attribute_type=ParameterType.FEATUREVECTOR)

    def input_params(self, data):
        self.epochs.set_value(data['Epochs'])

    def execute(self):
        feature_list = []
        epochs = self.epochs.value
        event_ids = epochs.event_id

        event_id_class_mp = self.event_id_to_class(event_ids)

        for event_name, event_id in event_ids.items():
            event_epochs = epochs[event_name].get_data()
            for epoch in event_epochs:
                # feature_vector = self.extractFeatures(epoch,event_id_class_mp[event_id])
                feature_vector = self.extractFeatures(epoch, event_id)
                feature_list.append(feature_vector)

        self.feature_vector.set_value(feature_list)

        stdout_string = '<br>Total datapoints: {} <br> No. of Features: {}'.format(
            len(feature_list), feature_list[0].features.shape)

        return (stdout_string, 'STRING')

    def event_id_to_class(self, event_ids):
        event_id_class_mp = {}
        i = 0
        for event_name, event_id in event_ids.items():
            if (event_id not in event_id_class_mp.keys()):
                event_id_class_mp[event_id] = i
                i += 1
        return event_id_class_mp

    def extractFeatures(self, epoch, event_id):
        features = np.array([])
        for channel_data in epoch:
            coff_approx, coff_detail = pywt.dwt(channel_data, 'db1')
            features = np.hstack([features, coff_approx])
        norm = np.linalg.norm(features)
        feature_vector = FeatureVector(features / norm, event_id)
        return feature_vector
class FeatureLabeling(Block):

    family = 'FeatureExtraction'
    name = 'FeatureLabeling'

    def __init__(self):
        self.feature_vector = BlockInput(name='FeatureVector',
                                         min_cardinality=1,
                                         max_cardinality=1,
                                         attribute_type=ParameterType.EPOCHS)
        self.labels = BlockParameter(
            name='Labels',
            attribute_type=ParameterType.STRING_ARRAY,
            defaultvalue='',
            description=
            'All comma separated event ids are considered as one class.<br>Event id will not be considered if not added'
        )
        self.feature_vector_out = BlockOutput(
            name='FeatureVector',
            min_cardinality=1,
            max_cardinality=100,
            attribute_type=ParameterType.FEATUREVECTOR)

    def input_params(self, data):
        self.feature_vector.set_value(data['FeatureVector'])
        self.labels.set_value(data['Labels'])

    def execute(self):
        '''
        Here every comma separated event ids are assigned same class.
        For exmaple if the block parameter is:
            - [ '2,4', '3', '5,6' ]
            - So classes are assigned like:
                - event id 2 and 4 are assigned class 0
                - event id 3 is assigned class 1
                - event id 5 and 5 are assigned class 2
        '''
        event_class_mp = self.event_class_mapping()
        features = []
        for feature in self.feature_vector.value:
            class_id = feature.class_id
            if (class_id in event_class_mp.keys()):
                feature.set_class(event_class_mp[class_id])
                features.append(feature)

        self.feature_vector_out.set_value(features)
        return (event_class_mp, 'STRING')

    def event_class_mapping(self):
        mapping = {}
        class_i = 0
        for label in self.labels.value:
            event_ids = [int(x) for x in label.split(',')]
            for event_id in event_ids:
                mapping[event_id] = class_i
            class_i += 1
        return mapping
class NeuralNetworkLayer(Block):

    family = 'Classification'
    name = 'NeuralNetworkLayer'

    def __init__(self):
        self.model = BlockInput(name='Model',
                                min_cardinality=0,
                                max_cardinality=1,
                                attribute_type=ParameterType.MODEL)
        self.units = BlockParameter(name='Number of Units',
                                    attribute_type=ParameterType.NUMBER,
                                    defaultvalue='',
                                    description='Must be an Integer')
        self.activation = BlockParameter(
            name='Activation Function',
            attribute_type=ParameterType.STRING,
            defaultvalue='relu',
            description=
            "Either, 'sigmoid', 'relu', 'softmax', 'elu', 'leaky-relu', 'selu' or 'gelu'"
        )
        self.dropout = BlockParameter(
            name='Dropout',
            attribute_type=ParameterType.STRING,
            defaultvalue='0',
            description="Fraction of the input units to drop")
        self.model_out = BlockOutput(name='Model',
                                     min_cardinality=1,
                                     max_cardinality=100,
                                     attribute_type=ParameterType.MODEL)

    def input_params(self, data):
        act_func = [
            'sigmoid', 'relu', 'softmax', 'elu', 'leaky-relu', 'selu', 'gelu'
        ]
        if ('Model' not in data.keys()):
            self.model.set_value(None)
        else:
            self.model.set_value(data['Model'])
        self.units.set_value(int(data['Number of Units']))
        self.activation.set_value(data['Activation Function'])
        self.dropout.set_value(float(data['Dropout']))

    def execute(self):
        if (self.model.value == None):
            model = Sequential()
        else:
            model = self.model.value
        model.add(Dense(self.units.value, activation=self.activation.value))
        model.add(Dropout(self.dropout.value))
        self.model_out.set_value(model)

        return None
Esempio n. 8
0
class Filter(Block):

    family = 'PreProcessing'
    name = 'Filter'

    def __init__(self):
        self.eeg_data = BlockInput(name='EEGData',
                                   min_cardinality=1,
                                   max_cardinality=1,
                                   attribute_type=ParameterType.EEGDATA)
        self.low_cutoff_freq = BlockParameter(
            name='Low Cutoff Frequency',
            attribute_type=ParameterType.NUMBER,
            defaultvalue='None',
            description='If None the data are only low-passed')
        self.high_cutoff_freq = BlockParameter(
            name='High Cutoff Frequency',
            attribute_type=ParameterType.NUMBER,
            defaultvalue='None',
            description='If None the data are only high-passed')
        self.eeg_data_output = BlockOutput(
            name='EEGData',
            min_cardinality=1,
            max_cardinality=100,
            attribute_type=ParameterType.EEGDATA)

    def input_params(self, data):
        self.eeg_data.set_value(data['EEGData'])
        if (data['Low Cutoff Frequency'] == 'None'):
            self.low_cutoff_freq.set_value(None)
        else:
            self.low_cutoff_freq.set_value(float(data['Low Cutoff Frequency']))
        if (data['High Cutoff Frequency'] == 'None'):
            self.high_cutoff_freq.set_value(None)
        else:
            self.high_cutoff_freq.set_value(
                float(data['High Cutoff Frequency']))

    def execute(self):
        raw = self.eeg_data.value
        raw.filter(self.low_cutoff_freq.value,
                   self.high_cutoff_freq.value,
                   fir_design='firwin')
        self.eeg_data_output.set_value(raw)
        return None
Esempio n. 9
0
class EventAndIds(Block):

    family = 'PreProcessing'
    name = 'EventAndIds'
    description = "Dictionary of 'Name' : 'Id' pair"

    def __init__(self):
        self.eeg_data = BlockInput(name='EEGData',
                                   min_cardinality=1,
                                   max_cardinality=1,
                                   attribute_type=ParameterType.EEGDATA)

    def input_params(self, data):
        self.eeg_data.set_value(data['EEGData'])

    def execute(self):
        raw = self.eeg_data.value
        events, event_ids = mne.events_from_annotations(raw)
        return (event_ids, 'STRING')
Esempio n. 10
0
class ChannelNames(Block):

    family = 'PreProcessing'
    name = 'ChannelNames'

    def __init__(self):
        self.eeg_data = BlockInput(
            name='EEGData',
            min_cardinality=1,
            max_cardinality=1,
            attribute_type=ParameterType.EEGDATA
        )

    def input_params(self,data):
        self.eeg_data.set_value(data['EEGData'])

    def execute(self):
        value = self.eeg_data.value
        return (value.ch_names,'STRING')
        
Esempio n. 11
0
class ChannelSelection(Block):

    family = 'PreProcessing'
    name = 'ChannelSelection'

    def __init__(self):
        self.eeg_data = BlockInput(
            name='EEGData',
            min_cardinality=1,
            max_cardinality=1,
            attribute_type=ParameterType.EEGDATA
        )
        self.channels = BlockParameter(
            name='Channels',
            attribute_type=ParameterType.STRING_ARRAY,
            defaultvalue='',
            description='Select channel'
        )
        self.eeg_data_output = BlockOutput(
            name='EEGData',
            min_cardinality=1,
            max_cardinality=100,
            attribute_type=ParameterType.EEGDATA
        )

    def input_params(self,data):
        self.channels.set_value(data['Channels'])
        self.eeg_data.set_value(data['EEGData'])

    def execute(self):
        value = self.eeg_data.value
        value = value.pick_channels(self.channels.value)

        self.eeg_data_output.set_value(value)

        return (value.get_data().shape,'STRING')
Esempio n. 12
0
class SaveModel(Block):

    family = 'Classification'
    name = 'SaveModel'

    def __init__(self):
        self.model = BlockInput(name='Model',
                                min_cardinality=0,
                                max_cardinality=1,
                                attribute_type=ParameterType.MODEL)
        self.model_out = BlockOutput(name='Model',
                                     min_cardinality=1,
                                     max_cardinality=100,
                                     attribute_type=ParameterType.MODEL)

    def input_params(self, data):
        if ('Model' not in data.keys()):
            self.model.set_value(None)
        else:
            self.model.set_value(data['Model'])

    def execute(self):
        self.model_out.set_value(self.model.value)
        return (self.model_out.value, 'MODEL')
class Multiplication(Block):

    family = 'MultiDiv'
    name = 'Multiplication'

    def __init__(self):
        self.num1 = BlockInput(
            name='num1',
            min_cardinality=1,
            max_cardinality=1,
            attribute_type=ParameterType.NUMBER
        )
        self.num2 = BlockInput(
            name='num2',
            min_cardinality=1,
            max_cardinality=1,
            attribute_type=ParameterType.NUMBER
        )
        self.output = BlockOutput(
            name='output',
            min_cardinality=1,
            max_cardinality=1,
            attribute_type=ParameterType.NUMBER
        )
        

    def input_params(self,data):
        # time.sleep(10)
        # list(2)
        self.num1.set_value(data['num1'])
        self.num2.set_value(data['num2'])

    def execute(self):
        value = self.num1.value * self.num2.value
        self.output.set_value(value)
        return (value,'STRING')
class EpochExtraction(Block):

    family = 'PreProcessing'
    name = 'EpochExtraction'

    def __init__(self):
        self.eeg_data = BlockInput(name='EEGData',
                                   min_cardinality=1,
                                   max_cardinality=1,
                                   attribute_type=ParameterType.EEGDATA)
        self.pre_stimulus_onset = BlockParameter(
            name='PreStimulus onset',
            attribute_type=ParameterType.NUMBER,
            defaultvalue='-0.2',
            description='')
        self.post_stimulus_onset = BlockParameter(
            name='PostStimulus onset',
            attribute_type=ParameterType.NUMBER,
            defaultvalue='0.5',
            description='')
        self.baseline_start_time = BlockParameter(
            name='Baseline Correction Start Time',
            attribute_type=ParameterType.STRING,
            defaultvalue='None',
            description='None means beginning of the data')
        self.baseline_end_time = BlockParameter(
            name='Baseline Correction End Time',
            attribute_type=ParameterType.STRING,
            defaultvalue='0',
            description='None means end of the data')
        self.event_id = BlockParameter(name='Event Id',
                                       attribute_type=ParameterType.STRING,
                                       defaultvalue='None',
                                       description='None means all the events')
        self.eeg_data_output = BlockOutput(name='Epochs',
                                           min_cardinality=1,
                                           max_cardinality=100,
                                           attribute_type=ParameterType.EPOCHS)

    def input_params(self, data):
        self.eeg_data.set_value(data['EEGData'])
        self.pre_stimulus_onset.set_value(float(data['PreStimulus onset']))
        self.post_stimulus_onset.set_value(float(data['PostStimulus onset']))
        if (data['Baseline Correction Start Time'] == 'None'):
            self.baseline_start_time.set_value(None)
        else:
            self.baseline_start_time.set_value(
                float(data['Baseline Correction Start Time']))
        if (data['Baseline Correction End Time'] == 'None'):
            self.baseline_end_time.set_value(None)
        else:
            self.baseline_end_time.set_value(
                float(data['Baseline Correction End Time']))
        if (data['Event Id'] == 'None'):
            self.event_id.set_value(None)
        else:
            self.event_id.set_value(int(data['Event Id']))

    def execute(self):
        raw = self.eeg_data.value
        events, event_id = mne.events_from_annotations(raw)

        # https://mne.tools/stable/generated/mne.Epochs.html
        epochs = mne.Epochs(raw,
                            events,
                            event_id=self.event_id.value,
                            tmin=self.pre_stimulus_onset.value,
                            tmax=self.post_stimulus_onset.value,
                            baseline=(self.baseline_start_time.value,
                                      self.baseline_end_time.value),
                            preload=True)

        self.eeg_data_output.set_value(epochs)

        return (epochs.get_data().shape, 'STRING')
Esempio n. 15
0
class NeuralNetworkClassifier(Block):

    family = 'Classification'
    name = 'NeuralNetworkClassifier'

    def __init__(self):
        self.model = BlockInput(name='Model',
                                min_cardinality=0,
                                max_cardinality=1,
                                attribute_type=ParameterType.MODEL)
        self.feature_vector = BlockInput(
            name='FeatureVector',
            min_cardinality=0,
            max_cardinality=1,
            attribute_type=ParameterType.FEATUREVECTOR)
        self.optimizer = BlockParameter(
            name='Optimizer',
            attribute_type=ParameterType.STRING,
            defaultvalue='adam',
            description="Either, 'adam', 'adagrad', 'rmsprop'")
        self.test_size = BlockParameter(
            name='Test Size',
            attribute_type=ParameterType.NUMBER,
            defaultvalue='0.33',
            description="Test Train Split. Ratio of test size")
        self.epochs = BlockParameter(name='Number of Epochs',
                                     attribute_type=ParameterType.NUMBER,
                                     defaultvalue='100',
                                     description="")
        self.classes = BlockParameter(
            name='Number of Classes',
            attribute_type=ParameterType.NUMBER,
            defaultvalue='',
            description="Number of Classification classes")
        self.model_out = BlockOutput(name='Model',
                                     min_cardinality=1,
                                     max_cardinality=100,
                                     attribute_type=ParameterType.MODEL)

    def input_params(self, data):
        self.model.set_value(data['Model'])
        self.feature_vector.set_value(data['FeatureVector'])
        self.optimizer.set_value(data['Optimizer'])
        self.test_size.set_value(float(data['Test Size']))
        self.epochs.set_value(int(data['Number of Epochs']))
        self.classes.set_value(int(data['Number of Classes']))

    def execute(self):
        model = self.model.value
        model.compile(loss='categorical_crossentropy',
                      optimizer=self.optimizer.value,
                      metrics=['accuracy'])
        X = []
        Y = []
        for datapoint in self.feature_vector.value:
            X.append(datapoint.features)
            Y.append(datapoint.class_id)

        X_train, X_test, y_train, y_test = train_test_split(
            np.array(X),
            np.array(Y),
            test_size=self.test_size.value,
            random_state=42)
        number_of_training_sample = X_train.shape

        print(number_of_training_sample)
        print(X_test.shape)
        print(set(y_train))
        print(set(y_test))

        y_train = keras.utils.to_categorical(y_train, self.classes.value)
        y_test = keras.utils.to_categorical(y_test, self.classes.value)

        # X_train = X_test = np.array(X)
        # y_test = y_train = keras.utils.to_categorical(np.array(Y),self.classes.value)

        history = model.fit(X_train,
                            y_train,
                            epochs=self.epochs.value,
                            validation_data=(X_test, y_test))

        self.model_out.set_value(model)

        validation_acc = history.history['val_accuracy'][-1]
        training_acc = history.history['accuracy'][-1]
        stdout = "<br>Training Accuracy: {}<br>Validation Accuracy: {}<br>No. of Training Samples: {}".format(
            training_acc, validation_acc, number_of_training_sample[0])

        return (stdout, 'STRING')