def test_sequence_generator(): # Disclaimer: here we only check shapes, not values. output_dim = 1 dim = 20 batch_size = 30 n_steps = 10 transition = GatedRecurrent( name="transition", activation=Tanh(), dim=dim, weights_init=Orthogonal()) generator = SequenceGenerator( LinearReadout(readout_dim=output_dim, source_names=["states"], emitter=TestEmitter(name="emitter"), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.initialize() y = tensor.tensor3('y') mask = tensor.matrix('mask') costs = generator.cost(y, mask) assert costs.ndim == 2 costs_val = theano.function([y, mask], [costs])( numpy.zeros((n_steps, batch_size, output_dim), dtype=floatX), numpy.ones((n_steps, batch_size), dtype=floatX))[0] assert costs_val.shape == (n_steps, batch_size) states, outputs, costs = [variable.eval() for variable in generator.generate( iterate=True, batch_size=batch_size, n_steps=n_steps)] assert states.shape == (n_steps, batch_size, dim) assert outputs.shape == (n_steps, batch_size, output_dim) assert costs.shape == (n_steps, batch_size)
def test_integer_sequence_generator(): # Disclaimer: here we only check shapes, not values. readout_dim = 5 feedback_dim = 3 dim = 20 batch_size = 30 n_steps = 10 transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim, weights_init=Orthogonal()) generator = SequenceGenerator(LinearReadout( readout_dim=readout_dim, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback(readout_dim, feedback_dim), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.initialize() y = tensor.lmatrix('y') mask = tensor.matrix('mask') costs = generator.cost(y, mask) assert costs.ndim == 2 costs_val = theano.function([y, mask], [costs])(numpy.zeros((n_steps, batch_size), dtype='int64'), numpy.ones((n_steps, batch_size), dtype=floatX))[0] assert costs_val.shape == (n_steps, batch_size) states, outputs, costs = generator.generate(iterate=True, batch_size=batch_size, n_steps=n_steps) states_val, outputs_val, costs_val = theano.function( [], [states, outputs, costs], updates=costs.owner.inputs[0].owner.tag.updates)() assert states_val.shape == (n_steps, batch_size, dim) assert outputs_val.shape == (n_steps, batch_size) assert outputs_val.dtype == 'int64' assert costs_val.shape == (n_steps, batch_size)
def test_attention_transition(): inp_dim = 2 inp_len = 10 attended_dim = 3 attended_len = 11 batch_size = 4 n_steps = 30 transition = TestTransition(dim=inp_dim, attended_dim=attended_dim, name="transition") attention = SequenceContentAttention(transition.apply.states, match_dim=inp_dim, name="attention") mixer = Mixer( [name for name in transition.apply.sequences if name != 'mask'], attention.take_look.outputs[0], name="mixer") att_trans = AttentionTransition(transition, attention, mixer, name="att_trans") att_trans.weights_init = IsotropicGaussian(0.01) att_trans.biases_init = Constant(0) att_trans.initialize() attended = tensor.tensor3("attended") attended_mask = tensor.matrix("attended_mask") inputs = tensor.tensor3("inputs") inputs_mask = tensor.matrix("inputs_mask") states, glimpses, weights = att_trans.apply(input_=inputs, mask=inputs_mask, attended=attended, attended_mask=attended_mask) assert states.ndim == 3 assert glimpses.ndim == 3 assert weights.ndim == 3 input_vals = numpy.zeros((inp_len, batch_size, inp_dim), dtype=floatX) input_mask_vals = numpy.ones((inp_len, batch_size), dtype=floatX) attended_vals = numpy.zeros((attended_len, batch_size, attended_dim), dtype=floatX) attended_mask_vals = numpy.ones((attended_len, batch_size), dtype=floatX) func = theano.function([inputs, inputs_mask, attended, attended_mask], [states, glimpses, weights]) states_vals, glimpses_vals, weight_vals = func(input_vals, input_mask_vals, attended_vals, attended_mask_vals) assert states_vals.shape == input_vals.shape assert glimpses_vals.shape == (inp_len, batch_size, attended_dim) assert weight_vals.shape == (inp_len, batch_size, attended_len) # Test SequenceGenerator using AttentionTransition generator = SequenceGenerator(LinearReadout( readout_dim=inp_dim, source_names=["state"], emitter=TestEmitter(name="emitter"), name="readout"), transition=transition, attention=attention, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") outputs = tensor.tensor3('outputs') costs = generator.cost(outputs, attended=attended, attended_mask=attended_mask) costs_vals = costs.eval({ outputs: input_vals, attended: attended_vals, attended_mask: attended_mask_vals }) assert costs_vals.shape == (inp_len, batch_size) results = (generator.generate(n_steps=n_steps, batch_size=attended.shape[1], attended=attended, attended_mask=attended_mask)) assert len(results) == 5 states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = ( theano.function([attended, attended_mask], results)(attended_vals, attended_mask_vals)) assert states_vals.shape == (n_steps, batch_size, inp_dim) assert states_vals.shape == outputs_vals.shape assert glimpses_vals.shape == (n_steps, batch_size, attended_dim) assert weights_vals.shape == (n_steps, batch_size, attended_len) assert costs_vals.shape == (n_steps, batch_size)
def main(mode, save_path, num_batches, from_dump): if mode == "train": # Experiment configuration dimension = 100 readout_dimension = len(char2code) # Data processing pipeline data_stream = DataStreamMapping( mapping=lambda data: tuple(array.T for array in data), data_stream=PaddingDataStream( BatchDataStream( iteration_scheme=ConstantScheme(10), data_stream=DataStreamMapping( mapping=reverse_words, add_sources=("targets", ), data_stream=DataStreamFilter( predicate=lambda data: len(data[0]) <= 100, data_stream=OneBillionWord( "training", [99], char2code, level="character", preprocess=str.lower).get_default_stream()))))) # Build the model chars = tensor.lmatrix("features") chars_mask = tensor.matrix("features_mask") targets = tensor.lmatrix("targets") targets_mask = tensor.matrix("targets_mask") encoder = Bidirectional(GatedRecurrent(dim=dimension, activation=Tanh()), weights_init=Orthogonal()) encoder.initialize() fork = Fork([ name for name in encoder.prototype.apply.sequences if name != 'mask' ], weights_init=IsotropicGaussian(0.1), biases_init=Constant(0)) fork.input_dim = dimension fork.fork_dims = {name: dimension for name in fork.fork_names} fork.initialize() lookup = LookupTable(readout_dimension, dimension, weights_init=IsotropicGaussian(0.1)) lookup.initialize() transition = Transition(activation=Tanh(), dim=dimension, attended_dim=2 * dimension, name="transition") attention = SequenceContentAttention( state_names=transition.apply.states, match_dim=dimension, name="attention") readout = LinearReadout(readout_dim=readout_dimension, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback( readout_dimension, dimension), name="readout") generator = SequenceGenerator(readout=readout, transition=transition, attention=attention, weights_init=IsotropicGaussian(0.1), biases_init=Constant(0), name="generator") generator.push_initialization_config() transition.weights_init = Orthogonal() generator.initialize() bricks = [encoder, fork, lookup, generator] # Give an idea of what's going on params = Selector(bricks).get_params() logger.info("Parameters:\n" + pprint.pformat([(key, value.get_value().shape) for key, value in params.items()], width=120)) # Build the cost computation graph batch_cost = generator.cost( targets, targets_mask, attended=encoder.apply(**dict_union(fork.apply( lookup.lookup(chars), return_dict=True), mask=chars_mask)), attended_mask=chars_mask).sum() batch_size = named_copy(chars.shape[1], "batch_size") cost = aggregation.mean(batch_cost, batch_size) cost.name = "sequence_log_likelihood" logger.info("Cost graph is built") # Fetch variables useful for debugging max_length = named_copy(chars.shape[0], "max_length") cost_per_character = named_copy( aggregation.mean(batch_cost, batch_size * max_length), "character_log_likelihood") cg = ComputationGraph(cost) energies = unpack(VariableFilter(application=readout.readout, name="output")(cg.variables), singleton=True) min_energy = named_copy(energies.min(), "min_energy") max_energy = named_copy(energies.max(), "max_energy") (activations, ) = VariableFilter( application=generator.transition.apply, name="states")(cg.variables) mean_activation = named_copy(activations.mean(), "mean_activation") # Define the training algorithm. algorithm = GradientDescent(cost=cost, step_rule=CompositeRule([ GradientClipping(10.0), SteepestDescent(0.01) ])) observables = [ cost, min_energy, max_energy, mean_activation, batch_size, max_length, cost_per_character, algorithm.total_step_norm, algorithm.total_gradient_norm ] for name, param in params.items(): observables.append(named_copy(param.norm(2), name + "_norm")) observables.append( named_copy(algorithm.gradients[param].norm(2), name + "_grad_norm")) main_loop = MainLoop( model=bricks, data_stream=data_stream, algorithm=algorithm, extensions=([LoadFromDump(from_dump)] if from_dump else []) + [ Timing(), TrainingDataMonitoring(observables, after_every_batch=True), TrainingDataMonitoring( observables, prefix="average", every_n_batches=10), FinishAfter(after_n_batches=num_batches).add_condition( "after_batch", lambda log: math.isnan( log.current_row.total_gradient_norm)), Plot(os.path.basename(save_path), [["average_" + cost.name], ["average_" + cost_per_character.name]], every_n_batches=10), SerializeMainLoop(save_path, every_n_batches=500, save_separately=["model", "log"]), Printing(every_n_batches=1) ]) main_loop.run() elif mode == "test": with open(save_path, "rb") as source: encoder, fork, lookup, generator = dill.load(source) logger.info("Model is loaded") chars = tensor.lmatrix("features") generated = generator.generate( n_steps=3 * chars.shape[0], batch_size=chars.shape[1], attended=encoder.apply(**dict_union( fork.apply(lookup.lookup(chars), return_dict=True))), attended_mask=tensor.ones(chars.shape)) sample_function = ComputationGraph(generated).get_theano_function() logging.info("Sampling function is compiled") while True: # Python 2-3 compatibility line = input("Enter a sentence\n") batch_size = int(input("Enter a number of samples\n")) encoded_input = [ char2code.get(char, char2code["<UNK>"]) for char in line.lower().strip() ] encoded_input = ([char2code['<S>']] + encoded_input + [char2code['</S>']]) print("Encoder input:", encoded_input) target = reverse_words((encoded_input, ))[0] print("Target: ", target) states, samples, glimpses, weights, costs = sample_function( numpy.repeat(numpy.array(encoded_input)[:, None], batch_size, axis=1)) messages = [] for i in range(samples.shape[1]): sample = list(samples[:, i]) try: true_length = sample.index(char2code['</S>']) + 1 except ValueError: true_length = len(sample) sample = sample[:true_length] cost = costs[:true_length, i].sum() message = "({})".format(cost) message += "".join(code2char[code] for code in sample) if sample == target: message += " CORRECT!" messages.append((cost, message)) messages.sort(key=lambda tuple_: -tuple_[0]) for _, message in messages: print(message)
def main(): logging.basicConfig( level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") parser = argparse.ArgumentParser( "Case study of generating a Markov chain with RNN.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "mode", choices=["train", "sample"], help="The mode to run. Use `train` to train a new model" " and `sample` to sample a sequence generated by an" " existing one.") parser.add_argument("prefix", default="sine", help="The prefix for model, timing and state files") parser.add_argument("--steps", type=int, default=100, help="Number of steps to plot") args = parser.parse_args() dim = 10 num_states = ChainIterator.num_states feedback_dim = 8 transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim) generator = SequenceGenerator(LinearReadout( readout_dim=num_states, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback(num_states, feedback_dim, name='feedback'), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.allocate() logger.debug("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) if args.mode == "train": rng = numpy.random.RandomState(1) batch_size = 50 generator.push_initialization_config() transition.weights_init = Orthogonal() generator.initialize() logger.debug("transition.weights_init={}".format( transition.weights_init)) cost = generator.cost(tensor.lmatrix('x')).sum() gh_model = GroundhogModel(generator, cost) state = GroundhogState(args.prefix, batch_size, learning_rate=0.0001).as_dict() data = ChainIterator(rng, 100, batch_size) trainer = SGD(gh_model, state, data) main_loop = MainLoop(data, None, None, gh_model, trainer, state, None) main_loop.main() elif args.mode == "sample": load_params(generator, args.prefix + "model.npz") sample = ComputationGraph( generator.generate(n_steps=args.steps, batch_size=1, iterate=True)).function() states, outputs, costs = [data[:, 0] for data in sample()] numpy.set_printoptions(precision=3, suppress=True) print("Generation cost:\n{}".format(costs.sum())) freqs = numpy.bincount(outputs).astype(floatX) freqs /= freqs.sum() print("Frequencies:\n {} vs {}".format(freqs, ChainIterator.equilibrium)) trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX) for a, b in zip(outputs, outputs[1:]): trans_freqs[a, b] += 1 trans_freqs /= trans_freqs.sum(axis=1)[:, None] print("Transition frequencies:\n{}\nvs\n{}".format( trans_freqs, ChainIterator.trans_prob)) else: assert False
def main(): logging.basicConfig( level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") parser = argparse.ArgumentParser( "Case study of language modeling with RNN", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "mode", choices=["train", "sample"], help="The mode to run. Use `train` to train a new model" " and `sample` to sample a sequence generated by an" " existing one.") parser.add_argument("prefix", default="sine", help="The prefix for model, timing and state files") parser.add_argument("state", nargs="?", default="", help="Changes to Groundhog state") parser.add_argument("--path", help="Path to a language dataset") parser.add_argument("--dict", help="Path to the dataset dictionary") parser.add_argument("--restart", help="Start anew") parser.add_argument("--reset", action="store_true", default=False, help="Reset the hidden state between batches") parser.add_argument("--steps", type=int, default=100, help="Number of steps to plot for the 'sample' mode" " OR training sequence length for the 'train' mode.") args = parser.parse_args() logger.debug("Args:\n" + str(args)) dim = 200 num_chars = 50 transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim, weights_init=Orthogonal()) generator = SequenceGenerator(LinearReadout( readout_dim=num_chars, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback(num_chars, dim, name='feedback'), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.allocate() logger.debug("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) if args.mode == "train": batch_size = 1 seq_len = args.steps generator.initialize() # Build cost computation graph that uses the saved hidden states. # An issue: for Groundhog this is completely transparent, that's # why it does not carry the hidden state over the period when # validation in done. We should find a way to fix in the future. x = tensor.lmatrix('x') init_states = shared_floatx_zeros((batch_size, dim), name='init_states') reset = tensor.scalar('reset') cost = ComputationGraph( generator.cost(x, states=init_states * reset).sum()) # TODO: better search routine states = [ v for v in cost.variables if hasattr(v.tag, 'application_call') and v.tag.application_call.brick == generator.transition and (v.tag.application_call.application == generator.transition.apply) and v.tag.role == VariableRole.OUTPUT and v.tag.name == 'states' ] assert len(states) == 1 states = states[0] gh_model = GroundhogModel(generator, cost) gh_model.properties.append( ('bpc', cost.outputs[0] * numpy.log(2) / seq_len)) gh_model.properties.append(('mean_init_state', init_states.mean())) gh_model.properties.append(('reset', reset)) if not args.reset: gh_model.updates.append((init_states, states[-1])) state = GroundhogState(args.prefix, batch_size, learning_rate=0.0001).as_dict() changes = eval("dict({})".format(args.state)) state.update(changes) def output_format(x, y, reset): return dict(x=x[:, None], reset=reset) train, valid, test = [ LMIterator(batch_size=batch_size, use_infinite_loop=mode == 'train', path=args.path, seq_len=seq_len, mode=mode, chunks='chars', output_format=output_format, can_fit=True) for mode in ['train', 'valid', 'test'] ] trainer = SGD(gh_model, state, train) state['on_nan'] = 'warn' state['cutoff'] = 1. main_loop = MainLoop(train, valid, None, gh_model, trainer, state, None) if not args.restart: main_loop.load() main_loop.main() elif args.mode == "sample": load_params(generator, args.prefix + "model.npz") chars = numpy.load(args.dict)['unique_chars'] sample = ComputationGraph( generator.generate(n_steps=args.steps, batch_size=10, iterate=True)).function() states, outputs, costs = sample() for i in range(10): print("Generation cost: {}".format(costs[:, i].sum())) print("".join([chars[o] for o in outputs[:, i]])) else: assert False
def main(mode, save_path, steps, num_batches): num_states = MarkovChainDataset.num_states if mode == "train": # Experiment configuration rng = numpy.random.RandomState(1) batch_size = 50 seq_len = 100 dim = 10 feedback_dim = 8 # Build the bricks and initialize them transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim) generator = SequenceGenerator(LinearReadout( readout_dim=num_states, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback(num_states, feedback_dim, name='feedback'), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.push_initialization_config() transition.weights_init = Orthogonal() generator.initialize() # Give an idea of what's going on. logger.info("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) logger.info("Markov chain entropy: {}".format( MarkovChainDataset.entropy)) logger.info("Expected min error: {}".format( -MarkovChainDataset.entropy * seq_len)) # Build the cost computation graph. x = tensor.lmatrix('data') cost = aggregation.mean(generator.cost(x[:, :]).sum(), x.shape[1]) cost.name = "sequence_log_likelihood" algorithm = GradientDescent( cost=cost, params=list(Selector(generator).get_params().values()), step_rule=Scale(0.001)) main_loop = MainLoop(algorithm=algorithm, data_stream=DataStream( MarkovChainDataset(rng, seq_len), iteration_scheme=ConstantScheme(batch_size)), model=Model(cost), extensions=[ FinishAfter(after_n_batches=num_batches), TrainingDataMonitoring( [cost], prefix="this_step", after_every_batch=True), TrainingDataMonitoring([cost], prefix="average", every_n_batches=100), SerializeMainLoop(save_path, every_n_batches=500), Printing(every_n_batches=100) ]) main_loop.run() elif mode == "sample": main_loop = cPickle.load(open(save_path, "rb")) generator = main_loop.model sample = ComputationGraph( generator.generate(n_steps=steps, batch_size=1, iterate=True)).get_theano_function() states, outputs, costs = [data[:, 0] for data in sample()] numpy.set_printoptions(precision=3, suppress=True) print("Generation cost:\n{}".format(costs.sum())) freqs = numpy.bincount(outputs).astype(floatX) freqs /= freqs.sum() print("Frequencies:\n {} vs {}".format(freqs, MarkovChainDataset.equilibrium)) trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX) for a, b in zip(outputs, outputs[1:]): trans_freqs[a, b] += 1 trans_freqs /= trans_freqs.sum(axis=1)[:, None] print("Transition frequencies:\n{}\nvs\n{}".format( trans_freqs, MarkovChainDataset.trans_prob)) else: assert False
def main(mode, save_path, steps, time_budget, reset): num_states = ChainDataset.num_states if mode == "train": # Experiment configuration rng = numpy.random.RandomState(1) batch_size = 50 seq_len = 100 dim = 10 feedback_dim = 8 # Build the bricks and initialize them transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim) generator = SequenceGenerator( LinearReadout(readout_dim=num_states, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback( num_states, feedback_dim, name='feedback'), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.push_initialization_config() transition.weights_init = Orthogonal() generator.initialize() logger.info("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) logger.info("Markov chain entropy: {}".format( ChainDataset.entropy)) logger.info("Expected min error: {}".format( -ChainDataset.entropy * seq_len * batch_size)) if os.path.isfile(save_path) and not reset: model = Pylearn2Model.load(save_path) else: model = Pylearn2Model(generator) # Build the cost computation graph. # Note: would be probably nicer to make cost part of the model. x = tensor.ltensor3('x') cost = Pylearn2Cost(model.brick.cost(x[:, :, 0]).sum()) dataset = ChainDataset(rng, seq_len) sgd = SGD(learning_rate=0.0001, cost=cost, batch_size=batch_size, batches_per_iter=10, monitoring_dataset=dataset, monitoring_batch_size=batch_size, monitoring_batches=1, learning_rule=Pylearn2LearningRule( SGDLearningRule(), dict(training_objective=cost.cost))) train = Pylearn2Train(dataset, model, algorithm=sgd, save_path=save_path, save_freq=10) train.main_loop(time_budget=time_budget) elif mode == "sample": model = Pylearn2Model.load(save_path) generator = model.brick sample = ComputationGraph(generator.generate( n_steps=steps, batch_size=1, iterate=True)).function() states, outputs, costs = [data[:, 0] for data in sample()] numpy.set_printoptions(precision=3, suppress=True) print("Generation cost:\n{}".format(costs.sum())) freqs = numpy.bincount(outputs).astype(floatX) freqs /= freqs.sum() print("Frequencies:\n {} vs {}".format(freqs, ChainDataset.equilibrium)) trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX) for a, b in zip(outputs, outputs[1:]): trans_freqs[a, b] += 1 trans_freqs /= trans_freqs.sum(axis=1)[:, None] print("Transition frequencies:\n{}\nvs\n{}".format( trans_freqs, ChainDataset.trans_prob)) else: assert False
def main(): logging.basicConfig( level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") parser = argparse.ArgumentParser( "Case study of generating simple 1d sequences with RNN.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "mode", choices=["train", "plot"], help="The mode to run. Use `train` to train a new model" " and `plot` to plot a sequence generated by an" " existing one.") parser.add_argument("prefix", default="sine", help="The prefix for model, timing and state files") parser.add_argument("--input-noise", type=float, default=0.0, help="Adds Gaussian noise of given intensity to the " " training sequences.") parser.add_argument( "--function", default="lambda a, x: numpy.sin(a * x)", help="An analytical description of the sequence family to learn." " The arguments before the last one are considered parameters.") parser.add_argument("--steps", type=int, default=100, help="Number of steps to plot") parser.add_argument("--params", help="Parameter values for plotting") args = parser.parse_args() function = eval(args.function) num_params = len(inspect.getargspec(function).args) - 1 class Emitter(TrivialEmitter): @application def cost(self, readouts, outputs): """Compute MSE.""" return ((readouts - outputs)**2).sum(axis=readouts.ndim - 1) transition = GatedRecurrent(name="transition", activation=Tanh(), dim=10, weights_init=Orthogonal()) with_params = AddParameters(transition, num_params, "params", name="with_params") generator = SequenceGenerator(LinearReadout( readout_dim=1, source_names=["states"], emitter=Emitter(name="emitter"), name="readout"), with_params, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.allocate() logger.debug("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) if args.mode == "train": seed = 1 rng = numpy.random.RandomState(seed) batch_size = 10 generator.initialize() cost = ComputationGraph( generator.cost(tensor.tensor3('x'), params=tensor.matrix("params")).sum()) cost = apply_noise(cost, cost.inputs, args.input_noise) gh_model = GroundhogModel(generator, cost) state = GroundhogState(args.prefix, batch_size, learning_rate=0.0001).as_dict() data = SeriesIterator(rng, function, 100, batch_size) trainer = SGD(gh_model, state, data) main_loop = MainLoop(data, None, None, gh_model, trainer, state, None) main_loop.load() main_loop.main() elif args.mode == "plot": load_params(generator, args.prefix + "model.npz") params = tensor.matrix("params") sample = theano.function([params], generator.generate(params=params, n_steps=args.steps, batch_size=1)) param_values = numpy.array(map(float, args.params.split()), dtype=floatX) states, outputs, _ = sample(param_values[None, :]) actual = outputs[:, 0, 0] desired = numpy.array( [function(*(list(param_values) + [T])) for T in range(args.steps)]) print("MSE: {}".format(((actual - desired)**2).sum())) pyplot.plot(numpy.hstack([actual[:, None], desired[:, None]])) pyplot.show() else: assert False