Esempio n. 1
0
 def noise_resnet_block(inputs, kernel_size, stride, n_fmaps, scope_name):
   '''
   Embedding network
   :param inputs : context input
   :return out   : embedding vector represents the context information
   '''
   # The transformation path
   path1 = conv2d(inputs, kernel_size, [1] + stride + [1], n_fmaps, FLAGS.w_std, FLAGS.b_init, False, 'SAME', scope_name + '_conv1')
   path1 = batch_norm(istrain, path1, scope_name + '_conv1')
   path1 = tf.nn.relu(path1)
   path1 = conv2d(path1, kernel_size, [1, 1, 1, 1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_conv2')
   
   # The identity path
   n_input_channels = inputs.shape.as_list()[3]
   if n_input_channels == n_fmaps:
     path2 = inputs
   else:
     path2 = conv2d(inputs, [1, 1], [1] + stride + [1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_transform')
   
   # Add and return 
   assert path1.shape.as_list() == path2.shape.as_list()
   out = path1 + path2
   out = batch_norm(istrain, out, scope_name + '_addition')
   out = tf.nn.relu(out)
   return out
Esempio n. 2
0
 def cont_embed(n, out_dim, scope_name):
   out = tf.constant(list(range(0, n)), dtype=tf.float32) # [n]
   out = tf.reshape(out, [n, 1])  # [n, 1]
   out = dense(out, 50, FLAGS.w_std, 0.0, False, scope_name + '_dense1') # [n, 50]
   out = batch_norm(istrain, out, scope_name + scope_name + '_dense1')
   out = tf.nn.relu(out)
   out = dense(out, 50, FLAGS.w_std, 0.0, False, scope_name + '_dense2') # [n, 50]
   out = batch_norm(istrain, out, scope_name + scope_name + '_dense2')
   out = tf.nn.relu(out)
   out = dense(out, out_dim, 0.0, 0.0, False, scope_name + '_dense3') # [n, out_dim]
   return out
Esempio n. 3
0
def model(inputs, istrain):
  target, mixed, mixedph, targetph, pos, posph, neg, negph, noiseposcontext, noisenegcontext, location, cleanpath, noisepospath, noisenegpath, snr_pos, snr_neg = inputs
  nfeat = target.shape[2].value

  def noise_resnet_block(inputs, kernel_size, stride, n_fmaps, scope_name):
    '''
    Embedding network
    :param inputs : context input
    :return out   : embedding vector represents the context information
    '''
    # The transformation path
    path1 = conv2d(inputs, kernel_size, [1] + stride + [1], n_fmaps, FLAGS.w_std, FLAGS.b_init, False, 'SAME', scope_name + '_conv1')
    path1 = batch_norm(istrain, path1, scope_name + '_conv1')
    path1 = tf.nn.relu(path1)
    path1 = conv2d(path1, kernel_size, [1, 1, 1, 1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_conv2')
    
    # The identity path
    n_input_channels = inputs.shape.as_list()[3]
    if n_input_channels == n_fmaps:
      path2 = inputs
    else:
      path2 = conv2d(inputs, [1, 1], [1] + stride + [1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_transform')
    
    # Add and return 
    assert path1.shape.as_list() == path2.shape.as_list()
    out = path1 + path2
    out = batch_norm(istrain, out, scope_name + '_addition')
    out = tf.nn.relu(out)
    return out
    
  def resnet_block(inputs, noiseposemb, noisenegemb, kernel_size, stride, n_fmaps, scope_name):
    '''
    Residual block to process noisy signals, with injection of embedding vectors
    :param inputs      : input feature maps
    :param noiseposemb : positive embedding vector
    :param noisenegemb : negative embedding vector
    :param n_fmaps     : number of channels
    :return out        : output feature maps
    '''
    def cont_embed(n, out_dim, scope_name):
      out = tf.constant(list(range(0, n)), dtype=tf.float32) # [n]
      out = tf.reshape(out, [n, 1])  # [n, 1]
      out = dense(out, 50, FLAGS.w_std, 0.0, False, scope_name + '_dense1') # [n, 50]
      out = batch_norm(istrain, out, scope_name + scope_name + '_dense1')
      out = tf.nn.relu(out)
      out = dense(out, 50, FLAGS.w_std, 0.0, False, scope_name + '_dense2') # [n, 50]
      out = batch_norm(istrain, out, scope_name + scope_name + '_dense2')
      out = tf.nn.relu(out)
      out = dense(out, out_dim, 0.0, 0.0, False, scope_name + '_dense3') # [n, out_dim]
      return out
    
    def process_noise_t_f(match_to, scope_name):
      n_fmaps = match_to.shape[3].value
      # Project the noise to fit the conv
      noisepos_proj = dense(noiseposemb, n_fmaps, 0.0, 0.0, True, scope_name + '_noise_pos_emb') # [mb, n_fmaps]
      noisepos_proj = tf.expand_dims(noisepos_proj, 1)
      noisepos_proj = tf.expand_dims(noisepos_proj, 1)  # [mb, 1, 1, n_fmaps]

      noiseneg_proj = dense(noisenegemb, n_fmaps, 0.0, 0.0, True, scope_name + '_noise_neg_emb') # [mb, n_fmaps]
      noiseneg_proj = tf.expand_dims(noiseneg_proj, 1)
      noiseneg_proj = tf.expand_dims(noiseneg_proj, 1)  # [mb, 1, 1, n_fmaps]
      
      # Get the time and frequency embedding
      ts, fs = match_to.shape[1].value, match_to.shape[2].value
      tout = cont_embed(ts, n_fmaps, scope_name + '_temb')  # [ts, n_fmaps]
      tout = tf.expand_dims(tout, 1)
      tout = tf.expand_dims(tout, 0) # [1, time, 1, n_fmaps]
      fout = cont_embed(fs, n_fmaps, scope_name + '_femb')  # [fs, n_fmaps]
      fout = tf.expand_dims(fout, 0)
      fout = tf.expand_dims(fout, 0) # [1, 1, freq, n_fmaps]
      
      return noisepos_proj, noiseneg_proj, tout, fout
    
    # The transformation path
    path1 = conv2d(inputs, [kernel_size, kernel_size], [1, stride, stride, 1], 
                   n_fmaps, FLAGS.w_std, FLAGS.b_init, False, 
                   'SAME', scope_name + '_conv1')  # [mb, time, freq, n_fmaps]
    noisepos_proj1, noiseneg_proj1, tout1, fout1 = process_noise_t_f(path1, scope_name + '_conv1')
    path1 = path1 + noisepos_proj1 + noiseneg_proj1 + tout1 + fout1
    path1 = batch_norm(istrain, path1, scope_name + '_conv1')
    path1 = tf.nn.relu(path1)
    path1 = conv2d(path1, [kernel_size, kernel_size], [1,1,1,1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_conv2')
    noisepos_proj2, noiseneg_proj2, tout2, fout2 = process_noise_t_f(path1, scope_name + '_conv2')
    path1 = path1 + noisepos_proj2 + noiseneg_proj2 + tout2 + fout2

    # The identity path
    n_input_channels = inputs.shape.as_list()[3]
    if n_input_channels == n_fmaps:
      path2 = inputs
    else:
      path2 = conv2d(inputs, [1, 1], [1, stride, stride, 1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_transform')
    
    # Add and return 
    assert path1.shape.as_list() == path2.shape.as_list()
    out = path1 + path2
    out = batch_norm(istrain, out, scope_name + '_addition')
    out = tf.nn.relu(out)
    return out


  # The positive noise embedding
  with tf.variable_scope('embedding'):
    nout = None
    nout = noiseposcontext # [mb, noise frames, 201]
    nout = tf.expand_dims(nout, 3)
    nout = noise_resnet_block(nout, [8, 4], [3, 2], 64, 'noise_resblock1_1')  # [mb, noise frames, 201, 64]
    nout = noise_resnet_block(nout, [8, 4], [3, 2], 128, 'noise_resblock2_1') # [mb, noise frames / 2, 201 / 2, 64]
    nout = noise_resnet_block(nout, [4, 4], [1, 1], 256, 'noise_resblock3_1') # [mb, noise frames / 4, 201 / 4, 64]
    nout = noise_resnet_block(nout, [4, 4], [1, 2], 512, 'noise_resblock4_1') # [mb, noise frames / 8, 201 / 8, 512]
    nout = tf.nn.avg_pool(nout, [1, nout.shape[1].value, nout.shape[2].value, 1], [1, 1, 1, 1], 'VALID') # [mb, 1, 1, 512]
    assert nout.shape.as_list()[1:3] == [1, 1]
    noiseposemb = nout[:, 0, 0, :]    # [mb, 512]

  # The negative noise embedding
  with tf.variable_scope('embedding', reuse=True):
    nout = None
    nout = noisenegcontext # [mb, noise frames, 201]
    nout = tf.expand_dims(nout, 3)
    nout = noise_resnet_block(nout, [8, 4], [3, 2], 64, 'noise_resblock1_1') # [mb, noise frames, 201, 64]
    nout = noise_resnet_block(nout, [8, 4], [3, 2], 128, 'noise_resblock2_1') # [mb, noise frames / 2, 201 / 2, 64]
    nout = noise_resnet_block(nout, [4, 4], [1, 1], 256, 'noise_resblock3_1') # [mb, noise frames / 4, 201 / 4, 64]
    nout = noise_resnet_block(nout, [4, 4], [1, 2], 512, 'noise_resblock4_1') # [mb, noise frames / 8, 201 / 8, 512]
    nout = tf.nn.avg_pool(nout, [1, nout.shape[1].value, nout.shape[2].value, 1], [1, 1, 1, 1], 'VALID') # [mb, 1, 1, 512]
    assert nout.shape.as_list()[1:3] == [1, 1]
    noisenegemb = nout[:, 0, 0, :]    # [mb, 512]


  # Processing the mixed signal
  out = mixed # [mb, context frames, 201]
  out = tf.expand_dims(out, 3)
  out = resnet_block(out, noiseposemb, noisenegemb, 4, 1, 64, 'resblock1_1')
  out = resnet_block(out, noiseposemb, noisenegemb, 4, 1, 64, 'resblock1_2')
  out = resnet_block(out, noiseposemb, noisenegemb, 4, 2, 128, 'resblock2_1')
  out = resnet_block(out, noiseposemb, noisenegemb, 4, 1, 128, 'resblock2_2')
  out = resnet_block(out, noiseposemb, noisenegemb, 3, 2, 256, 'resblock3_1')
  out = resnet_block(out, noiseposemb, noisenegemb, 3, 1, 256, 'resblock3_2')
  out = resnet_block(out, noiseposemb, noisenegemb, 3, 2, 512, 'resblock4_1')
  out = resnet_block(out, noiseposemb, noisenegemb, 3, 1, 512, 'resblock4_2') # [mb, context frames / 8, 201 / 8, 512]

  # final layers
  out = conv2d(out, [out.shape[1].value, 1], [1, 1, 1, 1],
              512, FLAGS.w_std, FLAGS.b_init, False,
              'VALID', 'last_conv')                       # [mb, 1, 201 / 8, 512]
  out = batch_norm(istrain, out, 'last_conv')
  out = tf.nn.relu(out)
  out = flatten(out)                                      # [mb,  (201 / 8) * 512]
  out = dense(out, nfeat, 0.0, 0.0, True, 'last_dense')   # [mb, 201]
  mixed_central = mixed[:, FLAGS.window_frames // 2, :]   # [mb, 201]
  pos_central = pos[:, FLAGS.window_frames // 2, :]       # [mb, 201]
  neg_central = neg[:, FLAGS.window_frames // 2, :]       # [mb, 201]
  denoised = mixed_central + out                          # [mb, 201]
  
  # Loss
  se = tf.square(denoised - target[:, 0, :])              # [mb, 201]
  imp_factor = np.linspace(2, 1, nfeat, dtype=np.float32).reshape((1, nfeat))
  example_loss = tf.reduce_mean(se * tf.constant(imp_factor), axis=1)
  loss = tf.reduce_mean(example_loss)
  
  monitors = {'loss': loss}
  outputs = {'loss': example_loss, 'mixed': mixed_central, 'denoised': denoised, 'target': target[:, 0, :],
             'mixedph': mixedph[:, 0, :], 'targetph': targetph[:, 0, :], 'pos': pos_central, 'neg': neg_central, 'posph': posph[:, 0, :], 'negph': negph[:, 0, :], 'location': location, 'cleanpath': cleanpath,
             'noisepospath': noisepospath, 'noisenegpath': noisenegpath, 'snr_pos': snr_pos, 'snr_neg': snr_neg}
  return loss, monitors, outputs
Esempio n. 4
0
  def resnet_block(inputs, noiseposemb, noisenegemb, kernel_size, stride, n_fmaps, scope_name):
    '''
    Residual block to process noisy signals, with injection of embedding vectors
    :param inputs      : input feature maps
    :param noiseposemb : positive embedding vector
    :param noisenegemb : negative embedding vector
    :param n_fmaps     : number of channels
    :return out        : output feature maps
    '''
    def cont_embed(n, out_dim, scope_name):
      out = tf.constant(list(range(0, n)), dtype=tf.float32) # [n]
      out = tf.reshape(out, [n, 1])  # [n, 1]
      out = dense(out, 50, FLAGS.w_std, 0.0, False, scope_name + '_dense1') # [n, 50]
      out = batch_norm(istrain, out, scope_name + scope_name + '_dense1')
      out = tf.nn.relu(out)
      out = dense(out, 50, FLAGS.w_std, 0.0, False, scope_name + '_dense2') # [n, 50]
      out = batch_norm(istrain, out, scope_name + scope_name + '_dense2')
      out = tf.nn.relu(out)
      out = dense(out, out_dim, 0.0, 0.0, False, scope_name + '_dense3') # [n, out_dim]
      return out
    
    def process_noise_t_f(match_to, scope_name):
      n_fmaps = match_to.shape[3].value
      # Project the noise to fit the conv
      noisepos_proj = dense(noiseposemb, n_fmaps, 0.0, 0.0, True, scope_name + '_noise_pos_emb') # [mb, n_fmaps]
      noisepos_proj = tf.expand_dims(noisepos_proj, 1)
      noisepos_proj = tf.expand_dims(noisepos_proj, 1)  # [mb, 1, 1, n_fmaps]

      noiseneg_proj = dense(noisenegemb, n_fmaps, 0.0, 0.0, True, scope_name + '_noise_neg_emb') # [mb, n_fmaps]
      noiseneg_proj = tf.expand_dims(noiseneg_proj, 1)
      noiseneg_proj = tf.expand_dims(noiseneg_proj, 1)  # [mb, 1, 1, n_fmaps]
      
      # Get the time and frequency embedding
      ts, fs = match_to.shape[1].value, match_to.shape[2].value
      tout = cont_embed(ts, n_fmaps, scope_name + '_temb')  # [ts, n_fmaps]
      tout = tf.expand_dims(tout, 1)
      tout = tf.expand_dims(tout, 0) # [1, time, 1, n_fmaps]
      fout = cont_embed(fs, n_fmaps, scope_name + '_femb')  # [fs, n_fmaps]
      fout = tf.expand_dims(fout, 0)
      fout = tf.expand_dims(fout, 0) # [1, 1, freq, n_fmaps]
      
      return noisepos_proj, noiseneg_proj, tout, fout
    
    # The transformation path
    path1 = conv2d(inputs, [kernel_size, kernel_size], [1, stride, stride, 1], 
                   n_fmaps, FLAGS.w_std, FLAGS.b_init, False, 
                   'SAME', scope_name + '_conv1')  # [mb, time, freq, n_fmaps]
    noisepos_proj1, noiseneg_proj1, tout1, fout1 = process_noise_t_f(path1, scope_name + '_conv1')
    path1 = path1 + noisepos_proj1 + noiseneg_proj1 + tout1 + fout1
    path1 = batch_norm(istrain, path1, scope_name + '_conv1')
    path1 = tf.nn.relu(path1)
    path1 = conv2d(path1, [kernel_size, kernel_size], [1,1,1,1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_conv2')
    noisepos_proj2, noiseneg_proj2, tout2, fout2 = process_noise_t_f(path1, scope_name + '_conv2')
    path1 = path1 + noisepos_proj2 + noiseneg_proj2 + tout2 + fout2

    # The identity path
    n_input_channels = inputs.shape.as_list()[3]
    if n_input_channels == n_fmaps:
      path2 = inputs
    else:
      path2 = conv2d(inputs, [1, 1], [1, stride, stride, 1], n_fmaps, FLAGS.w_std, FLAGS.b_init, True, 'SAME', scope_name + '_transform')
    
    # Add and return 
    assert path1.shape.as_list() == path2.shape.as_list()
    out = path1 + path2
    out = batch_norm(istrain, out, scope_name + '_addition')
    out = tf.nn.relu(out)
    return out