Esempio n. 1
0
 def testNNMultipleInputs(self):
   nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=tf.tanh)
   x = [tf.placeholder(dtype=tf.float32, shape=[5, 7]),
        tf.placeholder(dtype=tf.float32, shape=[5, 3]),
        tf.placeholder(dtype=tf.float32, shape=[5, 5])]
   y = nn(*x)
   xs = self.CheckNN(y, nn, 'Tanh')
   self.assertEqual(len(x), len(xs))
   for u, v in zip(x, xs):
     self.assertIs(u, v)
Esempio n. 2
0
  def testConv2DBias(self):
    input_shape = [19, 14, 14, 64]
    filter_shape = [3, 7, 64, 128]
    strides = [1, 2, 2, 1]
    output_shape = [19, 6, 4, 128]

    conv = blocks_std.Conv2D(depth=filter_shape[-1],
                             filter_size=filter_shape[0:2],
                             strides=strides[1:3],
                             padding='VALID',
                             act=None,
                             bias=blocks_std.Bias(1))
    x = tf.placeholder(dtype=tf.float32, shape=input_shape)

    y = conv(x)
    self.CheckBiasAdd(y, conv._bias)
    self.assertEqual(output_shape, y.get_shape().as_list())
Esempio n. 3
0
 def testNNWithBiasWithAct(self):
   nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=tf.square)
   x = tf.placeholder(dtype=tf.float32, shape=[5, 7])
   y = nn(x)
   self.assertIs(x, self.CheckNN(y, nn, 'Square')[0])