def test_001(self): tb = self.tb src1_data = (0,0.2,-0.3,0,12,0) src2_data = (0,0.0,3.0,0,10,0) src3_data = (0,0.0,3.0,0,1,0) src1 = blocks.vector_source_f(src1_data) s2v1 = blocks.stream_to_vector(gr.sizeof_float, len(src1_data)) tb.connect(src1, s2v1) src2 = blocks.vector_source_f(src2_data) s2v2 = blocks.stream_to_vector(gr.sizeof_float, len(src1_data)) tb.connect(src2, s2v2) src3 = blocks.vector_source_f(src3_data) s2v3 = blocks.stream_to_vector(gr.sizeof_float, len(src1_data)) tb.connect(src3, s2v3) dst1 = blocks.vector_sink_s() dst2 = blocks.vector_sink_s() argmax = blocks.argmax_fs(len(src1_data)) tb.connect(s2v1, (argmax, 0)) tb.connect(s2v2, (argmax, 1)) tb.connect(s2v3, (argmax, 2)) tb.connect((argmax,0), dst1) tb.connect((argmax,1), dst2) tb.run() index = dst1.data() source = dst2.data() self.assertEqual(index, (4,)) self.assertEqual(source, (0,))
def test_001(self): tb = self.tb src1_data = (0, 0.2, -0.3, 0, 12, 0) src2_data = (0, 0.0, 3.0, 0, 10, 0) src3_data = (0, 0.0, 3.0, 0, 1, 0) src1 = blocks.vector_source_f(src1_data) s2v1 = blocks.stream_to_vector(gr.sizeof_float, len(src1_data)) tb.connect(src1, s2v1) src2 = blocks.vector_source_f(src2_data) s2v2 = blocks.stream_to_vector(gr.sizeof_float, len(src1_data)) tb.connect(src2, s2v2) src3 = blocks.vector_source_f(src3_data) s2v3 = blocks.stream_to_vector(gr.sizeof_float, len(src1_data)) tb.connect(src3, s2v3) dst1 = blocks.vector_sink_s() dst2 = blocks.vector_sink_s() argmax = blocks.argmax_fs(len(src1_data)) tb.connect(s2v1, (argmax, 0)) tb.connect(s2v2, (argmax, 1)) tb.connect(s2v3, (argmax, 2)) tb.connect((argmax, 0), dst1) tb.connect((argmax, 1), dst2) tb.run() index = dst1.data() source = dst2.data() self.assertEqual(index, (4, )) self.assertEqual(source, (0, ))
def run_flow_graph(sync_sym1, sync_sym2, data_sym): top_block = gr.top_block() carr_offset = random.randint(-max_offset/2, max_offset/2) * 2 tx_data = shift_tuple(sync_sym1, carr_offset) + \ shift_tuple(sync_sym2, carr_offset) + \ shift_tuple(data_sym, carr_offset) channel = [rand_range(min_chan_ampl, max_chan_ampl) * numpy.exp(1j * rand_range(0, 2 * numpy.pi)) for x in range(fft_len)] src = blocks.vector_source_c(tx_data, False, fft_len) chan = blocks.multiply_const_vcc(channel) noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude) add = blocks.add_cc(fft_len) chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1) sink = blocks.vector_sink_c(fft_len) top_block.connect(src, chan, (add, 0), chanest, sink) top_block.connect(noise, blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), (add, 1)) top_block.run() channel_est = None carr_offset_hat = 0 rx_sym_est = [0,] * fft_len tags = sink.tags() for tag in tags: if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset': carr_offset_hat = pmt.to_long(tag.value) self.assertEqual(carr_offset, carr_offset_hat) if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps': channel_est = shift_tuple(pmt.c32vector_elements(tag.value), carr_offset) shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset) for i in range(fft_len): if shifted_carrier_mask[i] and channel_est[i]: self.assertAlmostEqual(channel[i], channel_est[i], places=0) rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real return (carr_offset, list(shift_tuple(rx_sym_est, -carr_offset_hat)))
def test_004(self): vlen = 4 tune = counter4(self, 1) tune_delay = 1 dwell_delay = 2 msgq = gr.msg_queue() src_data = tuple([float(x) for x in ( 1, 2, 3, 4, 9, 6, 11, 8, 5, 10, 7, 12, 13, 14, 15, 16 )]) expected_results = tuple([float(x) for x in ( 9, 10, 11, 12)]) src = blocks.vector_source_f(src_data, False) s2v = blocks.stream_to_vector(gr.sizeof_float, vlen) stats = blocks.bin_statistics_f(vlen, msgq, tune, tune_delay, dwell_delay) self.tb.connect(src, s2v, stats) self.tb.run() self.assertEqual(1, msgq.count()) for i in range(1): m = parse_msg(msgq.delete_head()) #print "m =", m.center_freq, m.data self.assertEqual(expected_results[vlen*i:vlen*i + vlen], m.data)
def helper(self, v0, v1, fft_length, preamble): tb = self.tb src0 = blocks.vector_source_c(v0) src1 = blocks.vector_source_b(v1) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, fft_length) # print "len(v) = %d" % (len(v)) op = digital.ofdm_insert_preamble(fft_length, preamble) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, fft_length) dst0 = blocks.vector_sink_c() dst1 = blocks.vector_sink_b() tb.connect(src0, s2v, (op, 0)) tb.connect(src1, (op, 1)) tb.connect((op, 0), v2s, dst0) tb.connect((op, 1), dst1) tb.run() r0 = dst0.data() r0v = [] for i in range(len(r0) // fft_length): r0v.append(r0[i * fft_length:(i + 1) * fft_length]) r1 = dst1.data() self.assertEqual(len(r0v), len(r1)) return (r1, r0v)
def helper(self, v0, v1, fft_length, preamble): tb = self.tb src0 = blocks.vector_source_c(v0) src1 = blocks.vector_source_b(v1) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, fft_length) # print "len(v) = %d" % (len(v)) op = digital.ofdm_insert_preamble(fft_length, preamble) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, fft_length) dst0 = blocks.vector_sink_c() dst1 = blocks.vector_sink_b() tb.connect(src0, s2v, (op, 0)) tb.connect(src1, (op, 1)) tb.connect((op, 0), v2s, dst0) tb.connect((op, 1), dst1) tb.run() r0 = dst0.data() r0v = [] for i in range(len(r0)//fft_length): r0v.append(r0[i*fft_length:(i+1)*fft_length]) r1 = dst1.data() self.assertEqual(len(r0v), len(r1)) return (r1, r0v)
def xtest_004(self): vlen = 4 tune = counter4(self, 1) tune_delay = 1 dwell_delay = 2 msgq = gr.msg_queue() src_data = tuple([float(x) for x in ( 1, 2, 3, 4, 9, 6, 11, 8, 5, 10, 7, 12, 13, 14, 15, 16 )]) expected_results = tuple([float(x) for x in ( 9, 10, 11, 12)]) src = gr.vector_source_f(src_data, False) s2v = blocks.stream_to_vector(gr.sizeof_float, vlen) stats = blocks.bin_statistics_f(vlen, msgq, tune, tune_delay, dwell_delay) self.tb.connect(src, s2v, stats) self.tb.run() self.assertEqual(1, msgq.count()) for i in range(1): m = parse_msg(msgq.delete_head()) #print "m =", m.center_freq, m.data self.assertEqual(expected_results[vlen*i:vlen*i + vlen], m.data)
def help_const_ii(self, src_data, exp_data, op): src = blocks.vector_source_i(src_data) srcv = blocks.stream_to_vector(gr.sizeof_int, len(src_data)) rhs = blocks.vector_to_stream(gr.sizeof_int, len(src_data)) dst = blocks.vector_sink_i() self.tb.connect(src, srcv, op, rhs, dst) self.tb.run() result_data = dst.data() self.assertEqual(exp_data, result_data)
def test_003(self): # Same test as above, only use 2 threads tb = gr.top_block() fft_size = 32 tmp_data = ( (4377 + 4516j), (-1706.1268310546875 + 1638.4256591796875j), (-915.2083740234375 + 660.69427490234375j), (-660.370361328125 + 381.59600830078125j), (-499.96044921875 + 238.41630554199219j), (-462.26748657226562 + 152.88948059082031j), (-377.98440551757812 + 77.5928955078125j), (-346.85821533203125 + 47.152004241943359j), (-295 + 20j), (-286.33609008789062 - 22.257017135620117j), (-271.52999877929688 - 33.081821441650391j), (-224.6358642578125 - 67.019538879394531j), (-244.24473571777344 - 91.524826049804688j), (-203.09068298339844 - 108.54627227783203j), (-198.45195007324219 - 115.90768432617188j), (-182.97744750976562 - 128.12318420410156j), (-167 - 180j), (-130.33688354492188 - 173.83778381347656j), (-141.19784545898438 - 190.28807067871094j), (-111.09677124023438 - 214.48896789550781j), (-70.039543151855469 - 242.41630554199219j), (-68.960540771484375 - 228.30015563964844j), (-53.049201965332031 - 291.47097778320312j), (-28.695289611816406 - 317.64553833007812j), (57 - 300j), (45.301143646240234 - 335.69509887695312j), (91.936195373535156 - 373.32437133789062j), (172.09465026855469 - 439.275146484375j), (242.24473571777344 - 504.47515869140625j), (387.81732177734375 - 666.6788330078125j), (689.48553466796875 - 918.2142333984375j), (1646.539306640625 - 1694.1956787109375j), ) src_data = tuple([x / fft_size for x in tmp_data]) expected_result = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(fft_size)]) nthreads = 2 src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, fft_size) op = fft.fft_vcc(fft_size, False, [], False, nthreads) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, fft_size) dst = blocks.vector_sink_c() tb.connect(src, s2v, op, v2s, dst) tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data)
def help_cc(self, size, src_data, exp_data, op): for s in zip(range (len (src_data)), src_data): src = blocks.vector_source_c(s[1]) srcv = blocks.stream_to_vector(gr.sizeof_gr_complex, size) self.tb.connect(src, srcv) self.tb.connect(srcv, (op, s[0])) rhs = blocks.vector_to_stream(gr.sizeof_gr_complex, size) dst = blocks.vector_sink_c() self.tb.connect(op, rhs, dst) self.tb.run() result_data = dst.data() self.assertEqual(exp_data, result_data)
def test_003(self): # Same test as above, only use 2 threads tb = gr.top_block() fft_size = 32 tmp_data = ( (4377 + 4516j), (-1706.1268310546875 + 1638.4256591796875j), (-915.2083740234375 + 660.69427490234375j), (-660.370361328125 + 381.59600830078125j), (-499.96044921875 + 238.41630554199219j), (-462.26748657226562 + 152.88948059082031j), (-377.98440551757812 + 77.5928955078125j), (-346.85821533203125 + 47.152004241943359j), (-295 + 20j), (-286.33609008789062 - 22.257017135620117j), (-271.52999877929688 - 33.081821441650391j), (-224.6358642578125 - 67.019538879394531j), (-244.24473571777344 - 91.524826049804688j), (-203.09068298339844 - 108.54627227783203j), (-198.45195007324219 - 115.90768432617188j), (-182.97744750976562 - 128.12318420410156j), (-167 - 180j), (-130.33688354492188 - 173.83778381347656j), (-141.19784545898438 - 190.28807067871094j), (-111.09677124023438 - 214.48896789550781j), (-70.039543151855469 - 242.41630554199219j), (-68.960540771484375 - 228.30015563964844j), (-53.049201965332031 - 291.47097778320312j), (-28.695289611816406 - 317.64553833007812j), (57 - 300j), (45.301143646240234 - 335.69509887695312j), (91.936195373535156 - 373.32437133789062j), (172.09465026855469 - 439.275146484375j), (242.24473571777344 - 504.47515869140625j), (387.81732177734375 - 666.6788330078125j), (689.48553466796875 - 918.2142333984375j), (1646.539306640625 - 1694.1956787109375j)) src_data = tuple([x / fft_size for x in tmp_data]) expected_result = tuple([ complex(primes[2 * i], primes[2 * i + 1]) for i in range(fft_size) ]) nthreads = 2 src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, fft_size) op = fft.fft_vcc(fft_size, False, [], False, nthreads) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, fft_size) dst = blocks.vector_sink_c() tb.connect(src, s2v, op, v2s, dst) tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data)
def test_002(self): src_data=(-100,-99,-98,-97,-96,-1) expected_result = (float(max(src_data)),) src = gr.vector_source_f(src_data) s2v = blocks.stream_to_vector(gr.sizeof_float, len(src_data)) op = blocks.max_ff(len(src_data)) dst = gr.vector_sink_f() self.tb.connect(src, s2v, op, dst) self.tb.run() result_data = dst.data() self.assertEqual(expected_result, result_data)
def test_ff_003(self): block_size = 2 src_data = (0, 1000, 2000, 3000, 4000, 5000) expected_result = (0, 125, 250, 484.375, 718.75, 1048.828125) src = blocks.vector_source_f(src_data) s2p = blocks.stream_to_vector(gr.sizeof_float, block_size) op = filter.single_pole_iir_filter_ff (0.125, block_size) p2s = blocks.vector_to_stream(gr.sizeof_float, block_size) dst = blocks.vector_sink_f() self.tb.connect(src, s2p, op, p2s, dst) self.tb.run() result_data = dst.data() self.assertFloatTuplesAlmostEqual(expected_result, result_data, 3)
def test_001(self): src_data = (0, 0.2, -0.3, 0, 12, 0) expected_result = (float(max(src_data)), ) src = blocks.vector_source_f(src_data) s2v = blocks.stream_to_vector(gr.sizeof_float, len(src_data)) op = blocks.max_ff(len(src_data)) dst = blocks.vector_sink_f() self.tb.connect(src, s2v, op, dst) self.tb.run() result_data = dst.data() self.assertEqual(expected_result, result_data)
def test_ff_003(self): block_size = 2 src_data = (0, 1000, 2000, 3000, 4000, 5000) expected_result = (0, 125, 250, 484.375, 718.75, 1048.828125) src = blocks.vector_source_f(src_data) s2p = blocks.stream_to_vector(gr.sizeof_float, block_size) op = filter.single_pole_iir_filter_ff(0.125, block_size) p2s = blocks.vector_to_stream(gr.sizeof_float, block_size) dst = blocks.vector_sink_f() self.tb.connect(src, s2p, op, p2s, dst) self.tb.run() result_data = dst.data() self.assertFloatTuplesAlmostEqual(expected_result, result_data, 3)
def test_001(self): src_data = (0,0.2,-0.3,0,12,0) expected_result = (float(max(src_data)),) src = gr.vector_source_f(src_data) s2v = blocks.stream_to_vector(gr.sizeof_float, len(src_data)) op = blocks.max_ff(len(src_data)) dst = gr.vector_sink_f() self.tb.connect(src, s2v, op, dst) self.tb.run() result_data = dst.data() self.assertEqual(expected_result, result_data)
def test_002(self): src_data=(-100,-99,-98,-97,-96,-1) expected_result = (float(max(src_data)),) src = blocks.vector_source_f(src_data) s2v = blocks.stream_to_vector(gr.sizeof_float, len(src_data)) op = blocks.max_ff(len(src_data)) dst = blocks.vector_sink_f() self.tb.connect(src, s2v, op, dst) self.tb.run() result_data = dst.data() self.assertEqual(expected_result, result_data)
def test_004_connect (self): """ Advanced test: - Allocator -> IFFT -> Frequency offset -> FFT -> Serializer - FFT does shift (moves DC to middle) - Make sure input == output - Frequency offset is -2 carriers """ fft_len = 8 n_syms = 1 carr_offset = -2 freq_offset = 1.0 / fft_len * carr_offset # Normalized frequency occupied_carriers = ((-2, -1, 1, 2),) pilot_carriers = ((-3,),(3,)) pilot_symbols = ((1j,),(-1j,)) tx_data = (1, 2, 3, 4) tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(tx_data)) offsettag = gr.tag_t() offsettag.offset = 0 offsettag.key = pmt.string_to_symbol("ofdm_sync_carr_offset") offsettag.value = pmt.from_long(carr_offset) src = blocks.vector_source_c(tx_data, False, 1, (tag, offsettag)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, (), tag_name) tx_ifft = fft.fft_vcc(fft_len, False, (1.0/fft_len,)*fft_len, True) oscillator = analog.sig_source_c(1.0, analog.GR_COS_WAVE, freq_offset, 1.0/fft_len) mixer = blocks.multiply_cc() rx_fft = fft.fft_vcc(fft_len, True, (), True) sink2 = blocks.vector_sink_c(fft_len) self.tb.connect(rx_fft, sink2) serializer = digital.ofdm_serializer_vcc( alloc, "", 0, "ofdm_sync_carr_offset", True ) sink = blocks.vector_sink_c() self.tb.connect( src, alloc, tx_ifft, blocks.vector_to_stream(gr.sizeof_gr_complex, fft_len), (mixer, 0), blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), rx_fft, serializer, sink ) self.tb.connect(oscillator, (mixer, 1)) self.tb.run () self.assertComplexTuplesAlmostEqual(sink.data()[-len(occupied_carriers[0]):], tx_data, places=4)
def __init__(self, ts): """ Pad tranport stream packets to 256 bytes and reformat appropriately. Args: ts: MPEG transport stream. (sequence of ints in [0,255]; len(ts) % 188 == 0) """ src = blocks.vector_source_b(pad_transport_stream(ts)) s2v = blocks.stream_to_vector(gr.sizeof_char, atsc.sizeof_atsc_mpeg_packet) gr.hier_block2.__init__(self, "vector_source_ts", gr.io_signature(0, 0, 0), s2v.output_signature()) self.connect(src, s2v, self)
def test_002(self): vector_length = 10 repeats = 10 value = [0.5+i for i in range(0, vector_length)] src_data = value * repeats src = blocks.vector_source_f(src_data) s2v = blocks.stream_to_vector(gr.sizeof_float, vector_length) dst = blocks.probe_signal_vf(vector_length) self.tb.connect(src, s2v, dst) self.tb.run() output = dst.level() self.assertEqual(len(output), vector_length) self.assertAlmostEqual(value[3], output[3], places=6)
def test_002(self): vector_length = 10 repeats = 10 value = [0.5 + i for i in range(0, vector_length)] src_data = value * repeats src = blocks.vector_source_f(src_data) s2v = blocks.stream_to_vector(gr.sizeof_float, vector_length) dst = blocks.probe_signal_vf(vector_length) self.tb.connect(src, s2v, dst) self.tb.run() output = dst.level() self.assertEqual(len(output), vector_length) self.assertAlmostEqual(value[3], output[3], places=6)
def test_cc_003(self): block_size = 2 src_data = (complex(0,0), complex(1000,-1000), complex(2000,-2000), complex(3000,-3000), complex(4000,-4000), complex(5000,-5000)) expected_result = (complex(0,0), complex(125,-125), complex(250,-250), complex(484.375,-484.375), complex(718.75,-718.75), complex(1048.828125,-1048.828125)) src = blocks.vector_source_c(src_data) s2p = blocks.stream_to_vector(gr.sizeof_gr_complex, block_size) op = filter.single_pole_iir_filter_cc(0.125, block_size) p2s = blocks.vector_to_stream(gr.sizeof_gr_complex, block_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2p, op, p2s, dst) self.tb.run() result_data = dst.data() self.assertComplexTuplesAlmostEqual(expected_result, result_data, 3)
def run_flow_graph(sync_sym1, sync_sym2, data_sym): top_block = gr.top_block() carr_offset = random.randint(-max_offset / 2, max_offset / 2) * 2 tx_data = shift_tuple(sync_sym1, carr_offset) + \ shift_tuple(sync_sym2, carr_offset) + \ shift_tuple(data_sym, carr_offset) channel = [ rand_range(min_chan_ampl, max_chan_ampl) * numpy.exp(1j * rand_range(0, 2 * numpy.pi)) for x in range(fft_len) ] src = blocks.vector_source_c(tx_data, False, fft_len) chan = blocks.multiply_const_vcc(channel) noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude) add = blocks.add_cc(fft_len) chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1) sink = blocks.vector_sink_c(fft_len) top_block.connect(src, chan, (add, 0), chanest, sink) top_block.connect( noise, blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), (add, 1)) top_block.run() channel_est = None carr_offset_hat = 0 rx_sym_est = [ 0, ] * fft_len tags = sink.tags() for tag in tags: if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset': carr_offset_hat = pmt.to_long(tag.value) self.assertEqual(carr_offset, carr_offset_hat) if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps': channel_est = shift_tuple( pmt.c32vector_elements(tag.value), carr_offset) shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset) for i in range(fft_len): if shifted_carrier_mask[i] and channel_est[i]: self.assertAlmostEqual(channel[i], channel_est[i], places=0) rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real return (carr_offset, list(shift_tuple(rx_sym_est, -carr_offset_hat)))
def test_cc_003(self): block_size = 2 src_data = (complex(0, 0), complex(1000, -1000), complex(2000, -2000), complex(3000, -3000), complex(4000, -4000), complex(5000, -5000)) expected_result = (complex(0, 0), complex(125, -125), complex(250, -250), complex(484.375, -484.375), complex(718.75, -718.75), complex(1048.828125, -1048.828125)) src = blocks.vector_source_c(src_data) s2p = blocks.stream_to_vector(gr.sizeof_gr_complex, block_size) op = filter.single_pole_iir_filter_cc(0.125, block_size) p2s = blocks.vector_to_stream(gr.sizeof_gr_complex, block_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2p, op, p2s, dst) self.tb.run() result_data = dst.data() self.assertComplexTuplesAlmostEqual(expected_result, result_data, 3)
def test_004(self): #Test vector_to_streams. n = 8 src_len = n * 8 src_data = tuple(range(src_len)) expected_results = src_data src = blocks.vector_source_i(src_data) op1 = blocks.stream_to_vector(gr.sizeof_int, n) op2 = blocks.vector_to_streams(gr.sizeof_int, n) op3 = blocks.streams_to_stream(gr.sizeof_int, n) dst = blocks.vector_sink_i() self.tb.connect(src, op1, op2) for i in range(n): self.tb.connect((op2, i), (op3, i)) self.tb.connect(op3, dst) self.tb.run() self.assertEqual(expected_results, dst.data())
def __init__(self, item_size, sample_rate, vec_rate, vec_len): """ Create the block chain. Args: item_size: the number of bytes per sample sample_rate: the rate of incoming samples vec_rate: the rate of outgoing vectors (same units as sample_rate) vec_len: the length of the outgoing vectors in items """ self._vec_rate = vec_rate self._vec_len = vec_len self._sample_rate = sample_rate gr.hier_block2.__init__(self, "stream_to_vector_decimator", gr.io_signature(1, 1, item_size), # Input signature gr.io_signature(1, 1, item_size*vec_len)) # Output signature s2v = blocks.stream_to_vector(item_size, vec_len) self.one_in_n = blocks.keep_one_in_n(item_size*vec_len, 1) self._update_decimator() self.connect(self, s2v, self.one_in_n, self)