Esempio n. 1
0
    def __call__(self, image, mask=None, **kwargs):
        if self.is_resize:
            image = pre_processor.resize(image,
                                         size=(self.resize_height,
                                               self.resize_width))
            if mask is not None:
                mask = pre_processor.resize(mask,
                                            size=(self.resize_height,
                                                  self.resize_width))

        origin_height = image.shape[0]
        origin_width = image.shape[1]

        top = randint(0, origin_height - self.height)
        left = randint(0, origin_width - self.width)

        # crop
        image = image[top:top + self.height, left:left + self.width, :]
        if mask is not None:
            if np.ndim(mask) == 2:
                mask = mask[top:top + self.height, left:left + self.width]
            elif np.ndim(mask) == 3:
                mask = mask[top:top + self.height, left:left + self.width, :]

        return dict({'image': image, 'mask': mask}, **kwargs)
def show_semantic_segmentation(img, result, fps, window_height, window_width,
                               config):
    orig_img = resize(img, size=[window_height, window_width])

    seg_img = label_to_color_image(result, colormap)
    seg_img = cv2.resize(seg_img, dsize=(window_width, window_height))
    window_img = cv2.addWeighted(orig_img, 1, seg_img, 0.8, 0)
    window_img = add_fps(window_img, fps)

    window_name = "Semantic Segmentation Demo"
    cv2.imshow(window_name, window_img)
Esempio n. 3
0
def show_keypoint_detection(img, result, fps, window_height, window_width,
                            config):
    window_img = resize(img, size=[window_height, window_width])

    input_width = config.IMAGE_SIZE[1]
    input_height = config.IMAGE_SIZE[0]
    window_img = visualize_keypoint_detection(window_img, result[0],
                                              (input_height, input_width))
    window_img = add_fps(window_img, fps)

    window_name = "Keypoint Detection Demo"
    cv2.imshow(window_name, window_img)
Esempio n. 4
0
def show_semantic_segmentation(img, result, fps, window_height, window_width,
                               config):
    orig_img = resize(img, size=[window_height, window_width])

    colormap = np.array(get_color_map(len(config.CLASSES)), dtype=np.uint8)
    seg_img = label_to_color_image(result, colormap)
    seg_img = cv2.resize(seg_img, dsize=(window_width, window_height))
    window_img = cv2.addWeighted(orig_img, 1, seg_img, 0.8, 0)
    window_img = add_fps(window_img, fps)

    window_name = "Semantic Segmentation Demo"
    cv2.imshow(window_name, window_img)
def show_object_detection(img, result, fps, window_height, window_width,
                          config):
    window_img = resize(img, size=[window_height, window_width])

    input_width = config.IMAGE_SIZE[1]
    input_height = config.IMAGE_SIZE[0]
    window_img = add_rectangle(config.CLASSES, window_img, result,
                               (input_height, input_width))
    img = add_fps(window_img, fps)

    window_name = "Object Detection Demo"
    cv2.imshow(window_name, window_img)
Esempio n. 6
0
def show_classification(img, result, fps, window_height, window_width, config):
    window_img = resize(img, size=[window_height, window_width])

    result_class = np.argmax(result, axis=1)
    add_class_label(window_img,
                    text=str(result[0, result_class][0]),
                    font_scale=0.52,
                    dl_corner=(230, 230))
    add_class_label(window_img,
                    text=config.CLASSES[result_class[0]],
                    font_scale=0.52,
                    dl_corner=(230, 210))
    window_img = add_fps(window_img, fps)

    window_name = "Classification Demo"
    cv2.imshow(window_name, window_img)