Esempio n. 1
0
class Threading(bm.Scenario):
    nthreads = bm.var(type=int)
    ntraces = bm.var(type=int)
    nspans = bm.var(type=int)

    def create_trace(self, tracer):
        # type: (Tracer) -> None
        with tracer.trace("root"):
            for _ in range(self.nspans - 1):
                with tracer.trace("child"):
                    # Simulate work in each child
                    random.random()

    def run(self):
        # type: () -> Generator[Callable[[int], None], None, None]
        from ddtrace import tracer

        # configure global tracer to drop traces rather
        tracer.configure(writer=NoopWriter())

        def _(loops):
            # type: (int) -> None
            for _ in range(loops):
                with concurrent.futures.ThreadPoolExecutor(max_workers=self.nthreads) as executor:
                    tasks = {executor.submit(self.create_trace, tracer) for i in range(self.ntraces)}
                    for task in concurrent.futures.as_completed(tasks):
                        task.result()

        yield _
Esempio n. 2
0
class SamplingRules(bm.Scenario):
    num_iterations = bm.var(type=int)
    num_services = bm.var(type=int)
    num_operations = bm.var(type=int)

    def run(self):
        # Generate random service and operation names for the counts we requested
        services = [rands() for _ in range(self.num_services)]
        operation_names = [rands() for _ in range(self.num_operations)]

        # Generate all possible permutations of service and operation names
        spans = [
            Span(tracer=None, service=service, name=name)
            for service, name in itertools.product(services, operation_names)
        ]

        # Create a single rule to use for all matches
        # Pick a random service/operation name
        rule = SamplingRule(
            service=random.choice(services),
            name=random.choice(operation_names),
            sample_rate=1.0,
        )

        def _(loops):
            for _ in range(loops):
                for span in iter_n(spans, n=self.num_iterations):
                    rule.matches(span)

        yield _
Esempio n. 3
0
class HTTPPropagationInject(bm.Scenario):
    sampling_priority = bm.var(type=str)
    dd_origin = bm.var(type=str)
    meta = bm.var(type=str)

    def run(self):
        sampling_priority = None
        if self.sampling_priority != "":
            sampling_priority = int(self.sampling_priority)
        dd_origin = self.dd_origin or None

        meta = None
        if self.meta:
            meta = json.loads(self.meta)

        ctx = Context(
            trace_id=8336172473188639332,
            span_id=6804240797025004118,
            sampling_priority=sampling_priority,
            dd_origin=dd_origin,
            meta=meta,
        )

        def _(loops):
            for _ in range(loops):
                # Just pass in a new/empty dict, we don't care about the result
                http.HTTPPropagator.inject(ctx, {})

        yield _
Esempio n. 4
0
class HTTPPropagationExtract(bm.Scenario):
    headers = bm.var(type=str)
    extra_headers = bm.var(type=int)
    wsgi_style = bm.var(type=bool)

    def generate_headers(self):
        headers = json.loads(self.headers)
        if self.wsgi_style:
            headers = {
                utils.get_wsgi_header(header): value
                for header, value in headers.items()
            }

        for i in range(self.extra_headers):
            header = "x-test-header-{}".format(i)
            if self.wsgi_style:
                header = utils.get_wsgi_header(header)
            headers[header] = str(i)

        return headers

    def run(self):
        headers = self.generate_headers()

        def _(loops):
            for _ in range(loops):
                http.HTTPPropagator.extract(headers)

        yield _
Esempio n. 5
0
class Span(bm.Scenario):
    nspans = bm.var(type=int)
    ntags = bm.var(type=int)
    ltags = bm.var(type=int)
    nmetrics = bm.var(type=int)
    finishspan = bm.var_bool()

    def run(self):
        # run scenario to also set tags on spans
        tags = utils.gen_tags(self)
        settags = len(tags) > 0

        # run scenario to also set metrics on spans
        metrics = utils.gen_metrics(self)
        setmetrics = len(metrics) > 0

        # run scenario to include finishing spans
        finishspan = self.finishspan

        def _(loops):
            for _ in range(loops):
                for i in range(self.nspans):
                    s = dd_Span(None,
                                "test." + str(i),
                                resource="resource",
                                service="service")
                    if settags:
                        s.set_tags(tags)
                    if setmetrics:
                        s.set_metrics(metrics)
                    if finishspan:
                        s.finish()

        yield _
Esempio n. 6
0
class FlaskSimple(bm.Scenario):
    tracer_enabled = bm.var(type=bool)
    profiler_enabled = bm.var(type=bool)

    def run(self):
        with utils.server(self) as get_response:

            def _(loops):
                for _ in range(loops):
                    get_response()

            yield _
Esempio n. 7
0
class Tracer(bm.Scenario):
    depth = bm.var(type=int)

    def run(self):
        # configure global tracer to drop traces rather than encoded and sent to
        # an agent
        from ddtrace import tracer

        tracer.configure(settings={"FILTERS": [_DropTraces()]})

        def _(loops):
            for _ in range(loops):
                spans = []
                for i in range(self.depth):
                    spans.append(tracer.trace(str(i)))
                while len(spans) > 0:
                    span = spans.pop()
                    span.finish()

        yield _
Esempio n. 8
0
class Encoder(bm.Scenario):
    ntraces = bm.var(type=int)
    nspans = bm.var(type=int)
    ntags = bm.var(type=int)
    ltags = bm.var(type=int)
    nmetrics = bm.var(type=int)
    dd_origin = bm.var(type=bool)
    encoding = bm.var(type=str)

    def run(self):
        encoder = utils.init_encoder(self.encoding)
        traces = utils.gen_traces(self)

        def _(loops):
            for _ in range(loops):
                for trace in traces:
                    encoder.put(trace)
                    encoder.encode()

        yield _