Esempio n. 1
0
def test_base_bmodel_indicator_not_inputs():
    """Test that we cannot pass as indicator nodes that are input of other nodes"""
    J = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]])
    # node 1 cannot be indicator
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J, indicator_nodes=["node_1"])
    # node 2 cannot be indicator
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J, indicator_nodes=["node_2"])
    # instead node 0 can
    _ = Bmodel(J=J, indicator_nodes=["node_0"])
    assert True
Esempio n. 2
0
def test_base_bmodel_indicator_not_inputs_using_labels():
    """Test that we cannot pass as indicator nodes that are input of other nodes, using string labels"""
    J = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]])
    # node 1 cannot be indicator
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J, node_labels=["a", "b", "c"], indicator_nodes=["b"])
    # node 2 cannot be indicator
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J, node_labels=["a", "b", "c"], indicator_nodes=["c"])
    # instead node 0 can
    _ = Bmodel(J=J, node_labels=["a", "b", "c"], indicator_nodes=["a"])
    assert True
Esempio n. 3
0
def test_base_bmodel_no_hold():
    """Test the no hold option"""
    n_nodes = 12
    n_runs_pert = 16
    bmodel = Bmodel(J=random_interaction_matrix(N=n_nodes))
    bmodel.runs(16)
    hold = False
    for config in bmodel.steady_states.values:
        for node_to_switch in bmodel.node_labels:
            for switch_to in ["ON", "OFF"]:
                bmodel.perturbe(initial_condition=config,
                                node_to_switch=node_to_switch,
                                switch_to=switch_to,
                                n_runs=n_runs_pert,
                                hold=hold)

    # if node is not holded, then final state can or cannot be what we asked for
    # this is difficult to test
    checks = []
    for switched_node in bmodel.node_labels:
        for switch_to in ["ON", "OFF"]:
            perturbations = bmodel.get_perturbations(
                switched_node=switched_node, switch_to=switch_to, hold=hold)
            checks.append((perturbations[switched_node] == {
                "ON": -1,
                "OFF": 1
            }[switch_to]).values)
    checks = list(np.concatenate(checks))
    checks = sorted(list(set(checks)))
    assert checks == [False, True]
Esempio n. 4
0
def test_base_bmodel_hold():
    """Test the hold option"""
    n_nodes = 12
    n_runs_pert = 4
    bmodel = Bmodel(J=random_interaction_matrix(N=n_nodes))
    bmodel.runs(16)
    hold = True
    for config in bmodel.steady_states.values:
        for node_to_switch in bmodel.node_labels:
            for switch_to in ["ON", "OFF"]:
                bmodel.perturbe(initial_condition=config,
                                node_to_switch=node_to_switch,
                                switch_to=switch_to,
                                n_runs=n_runs_pert,
                                hold=hold)

    # If node is holded, its final state must be what we asked for
    for switched_node in bmodel.node_labels:
        for switch_to in ["ON", "OFF"]:
            perturbations = bmodel.get_perturbations(
                switched_node=switched_node, switch_to=switch_to, hold=hold)
            assert np.all(perturbations[switched_node] == {
                "ON": 1,
                "OFF": -1
            }[switch_to])
Esempio n. 5
0
def test_base_bmodel_get_perturbations():
    """Test that we retrieve the right number of perturbations"""
    n_nodes = 16
    n_runs_pert = 5
    bmodel = Bmodel(J=random_interaction_matrix(N=n_nodes), maxT=4)
    bmodel.runs(20)
    # do the perturbations
    for config in bmodel.steady_states.values:
        for hold in [True, False]:
            for node_to_switch in bmodel.node_labels:
                for switch_to in ["ON", "OFF"]:
                    bmodel.perturbe(initial_condition=config,
                                    node_to_switch=node_to_switch,
                                    switch_to=switch_to,
                                    n_runs=n_runs_pert,
                                    hold=hold)
    # count the perturbations
    for hold in [True, False]:
        for switched_node in bmodel.node_labels:
            for switch_to in ["ON", "OFF"]:
                perturbations = bmodel.get_perturbations(
                    switched_node=switched_node,
                    switch_to=switch_to,
                    hold=hold)
                n_ics = (bmodel.steady_states[switched_node] == {
                    "ON": -1,
                    "OFF": 1
                }[switch_to]).sum()
                assert perturbations.shape == (n_ics * n_runs_pert, n_nodes)
Esempio n. 6
0
def test_base_bmodel_indicator_can_fail():
    n_nodes = 16
    J = random_interaction_matrix(N=n_nodes)
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    indicator_nodes = ["node_a", "node_b"]
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J,
                   node_labels=node_labels,
                   indicator_nodes=indicator_nodes)
Esempio n. 7
0
def test_base_bmodel_indicator_unique():
    """Test that we cannot pass non-unique indicators"""
    n_nodes = 16
    J = random_interaction_matrix(N=n_nodes)
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    indicator_nodes = ["node_0", "node_1", "node_0"]
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J,
                   node_labels=node_labels,
                   indicator_nodes=indicator_nodes)
Esempio n. 8
0
def test_base_bmodel_indicator_idx():
    """Test that we correctly save the positions of indicator nodes"""
    n_nodes = 4
    J = np.array([
        [0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 0],
        [0, 1, 0, 0],
    ])
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    indicator_nodes = ["node_0", "node_3"]
    bmodel = Bmodel(J=J,
                    node_labels=node_labels,
                    indicator_nodes=indicator_nodes)
    assert bmodel._indicator_idx == [0, 3]
Esempio n. 9
0
def test_base_bmodel_indicator_is_set():
    n_nodes = 16
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    # let us get at least two indicator nodes
    num_indicators = 0
    while num_indicators <= 1:
        J = random_interaction_matrix(N=n_nodes)
        indicator_nodes = [
            node for i, node in enumerate(node_labels) if np.all(J[:, i] == 0)
        ]
        num_indicators = len(indicator_nodes)
    bmodel = Bmodel(J=J,
                    node_labels=node_labels,
                    indicator_nodes=indicator_nodes)
    assert bmodel.indicator_nodes == list(indicator_nodes)
Esempio n. 10
0
def test_base__fill_in_indicator_nodes():
    """Test that we can fill in indicator nodes"""
    J = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]])
    bmodel = Bmodel(J=J, node_labels=["a", "b", "c"], indicator_nodes=["a"])

    # get some steady states
    bmodel.runs(20)

    # erase indicator nodes, fill in indicator nodes, and make sure nothing else changed
    for t in range(len(bmodel.steady_states)):
        initial_condition = bmodel.steady_states.values[t]
        initial_condition[bmodel._indicator_idx] = 0
        ic = bmodel._parse_initial_condition(initial_condition)
        ic_filled = bmodel._fill_in_indicator_nodes(ic)
        for i, (a, b) in enumerate(zip(ic, ic_filled)):
            if i in bmodel._indicator_idx:
                assert a == 0
                assert b in [-1, 1]
            else:
                assert a == b
Esempio n. 11
0
def test_base_bmodel_init():
    """Test that bmodel objects can be instantiated."""
    J = np.array([[0, -1], [-1, 0]])
    bmodel = Bmodel(J=J)
    assert isinstance(bmodel, Bmodel)
Esempio n. 12
0
def bmodel_abc_chain():
    J = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]])
    bmodel = Bmodel(J=J, node_labels=["a", "b", "c"], indicator_nodes=["a"])
    return bmodel
Esempio n. 13
0
def bmodel_neg_feedback():
    """Create simple network for testing."""
    J = np.array([[0, -1], [-1, 0]])
    node_labels = ["node0", "node1"]
    bmodel = Bmodel(J=J, node_labels=node_labels, maxT=100)
    return bmodel