Esempio n. 1
0
    def update(self, cluster: Cluster, step: int) -> None:
        super().update(cluster=cluster, step=step)

        cluster.minimum = False
        cluster = self.database.insert_cluster(cluster)

        worker_pool = Pool(processes=self.n_processes)

        minima = Pool.map(self.quench(cluster),
                          [cluster for i in range(self.n_quench)])

        for _ in range(self.n_quench):

            minimum = self.quench(cluster)
            minimum.step = step
            minimum = self.database.insert_cluster(minimum)

            minima.append(minimum)

        self.results_dict[cluster] = Counter(minima)
Esempio n. 2
0
    def minimize(self, cluster: Cluster) -> Cluster:

        self.step_size = self.initial_step
        step = 0

        _ = cluster.get_particle_positions()
        # n_coords = len(_[1])
        self.coords = _[0]

        np.random.shuffle(self.coords)

        last_energy = self.pot.get_energy(cluster)

        converged = False
        while step <= self.max_steps and not converged:
            converged = True
            step += 1

            for idx in range(len(self.coords)):
                self._take_step(self.coords[idx])

            cluster.set_particle_positions((self.coords, _[1], _[2]))
            new_energy = self.pot.get_energy(cluster)
            # print(new_energy, last_energy)
            dE = new_energy - last_energy
            last_energy = new_energy
            self.update()

            if abs(dE) >= self.convergence_gradient:
                converged = False

        # print(f"Exiting in {step} steps")
        # for i in self.coords:
        #     print("Cl   " + "   ".join([str(a) for a in i]))
        cluster.minimum = True
        return cluster