def main(): args = parse_args() jobpath, taskids = parse_jobpath_and_taskids(args) for taskid in taskids: taskpath = os.path.join(jobpath, taskid) if args.lap is not None: prefix, bLap = ModelReader.getPrefixForLapQuery(taskpath, args.lap) if bLap != args.lap: print 'Using saved lap: ', bLap else: prefix = 'Best' # default hmodel = ModelReader.load_model(taskpath, prefix) plotModelInNewFigure(jobpath, hmodel, args) if args.savefilename is not None: pylab.show(block=False) pylab.savefig(args.savefilename % (taskid)) if args.savefilename is None: pylab.show(block=True)
def init_global_params_from_bnpy_format(hmodel, Data, initname, prefix): storedModel = ModelReader.load_model(initname, prefix) # TODO check if dimension matches aTypesMatch = type(storedModel.allocModel) == type(hmodel.allocModel) oTypesMatch = type(storedModel.obsModel) == type(hmodel.obsModel) inferTypesMatch = storedModel.inferType == hmodel.inferType if aTypesMatch and oTypesMatch and inferTypesMatch: hmodel.set_global_params(hmodel=storedModel) else: LP = storedModel.calc_local_params(Data) SS = hmodel.get_global_suff_stats(Data, LP) hmodel.update_global_params(SS)
def init_global_params_from_bnpy_format(hmodel, Data, initname, initLapFrac=-1, prefix='Best', **kwargs): """ Initialize global parameters for hmodel from bnpy disk format. Post Condition ------- hmodel has valid global parameters. ''' """ if initLapFrac > -1: storedModel, lap = ModelReader.load_model_at_lap(initname, initLapFrac) else: storedModel = ModelReader.load_model_at_prefix(initname, prefix) try: hmodel.set_global_params(hmodel=storedModel, obsModel=storedModel.obsModel) except Exception: LP = storedModel.calc_local_params(Data) SS = hmodel.get_global_suff_stats(Data, LP) hmodel.update_global_params(SS)
def test_save_then_load_same_model(self, prefix='Test'): ''' Verify that we can save model H to disk, load it back in as G, and get same results from calculations on H,G with same inputs ''' ModelWriter.save_model(self.hmodel, '/tmp/', prefix) gmodel = ModelReader.load_model('/tmp/', prefix) assert type(gmodel.allocModel) == type(self.hmodel.allocModel) assert gmodel.allocModel.K == self.hmodel.allocModel.K K = gmodel.allocModel.K for k in range(K): gSig = gmodel.obsModel.comp[k].ECovMat() hSig = self.hmodel.obsModel.comp[k].ECovMat() assert np.allclose(gSig, hSig) # Make sure we get same responsibilities before and after hLP = self.hmodel.calc_local_params(self.Data) gLP = gmodel.calc_local_params(self.Data) assert np.allclose(hLP['resp'], gLP['resp'])