def matmul(a, b, no_blas=False): """ Matrix multiplication of two 2-D arrays. Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the matrix multiplication of `a` and `b`. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- dot : Dot product of two arrays. Examples -------- >>> np.matmul(np.array([[1,2],[3,4]]),np.array([[5,6],[7,8]])) array([[19, 22], [43, 50]]) """ if not dtype_equal(a, b): raise ValueError("Input must be of same type") if a.ndim != 2 and b.ndim != 2: raise ValueError("Input must be 2-D.") if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if not no_blas and a.dtype.kind in np.typecodes[ "AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)
def matmul(a, b, no_blas=False): """ Matrix multiplication of two 2-D arrays. Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the matrix multiplication of `a` and `b`. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- dot : Dot product of two arrays. Examples -------- >>> np.matmul(np.array([[1,2],[3,4]]),np.array([[5,6],[7,8]])) array([[19, 22], [43, 50]]) """ if not dtype_equal(a, b): raise ValueError("Input must be of same type") if a.ndim != 2 and b.ndim != 2: raise ValueError("Input must be 2-D.") if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if not no_blas and a.dtype.kind in np.typecodes["AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)
def dot(a, b, no_blas=False): """ Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of `a` and the second-to-last of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it's the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) if b.ndim == 1: return ufuncs.add.reduce(a * b, -1) if a.ndim == 1: return ufuncs.add.reduce(a * numpy.transpose(b), -1) if not no_blas and a.ndim == 2 and b.ndim == 2: # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if a.dtype.kind in np.typecodes[ "AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)
def dot(a, b, no_blas=False): """ Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of `a` and the second-to-last of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it's the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) if b.ndim == 1: return ufuncs.add.reduce(a * b, -1) if a.ndim == 1: return ufuncs.add.reduce(a * numpy.transpose(b), -1) if not no_blas and a.ndim == 2 and b.ndim == 2: # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if a.dtype.kind in np.typecodes["AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)