Esempio n. 1
0
    def test_from_hsl(self):
        c = HSL(10, 0.1, 0.2)
        c2 = bcr.RGB.from_hsl(c)
        assert c2 is not c
        assert c2.a == 1.0
        assert c2.r == 56
        assert c2.g == 48
        assert c2.b == 46

        c = HSL(10, 0.1, 0.2, 0.3)
        c2 = bcr.RGB.from_hsl(c)
        assert c2 is not c
        assert c2.a == 0.3
        assert c2.r == 56
        assert c2.g == 48
        assert c2.b == 46
Esempio n. 2
0
def tree_to_wedge_data(data,
                       tree,
                       level=0,
                       total=None,
                       subtotal=0,
                       ancestor_subtotal=None,
                       threshold=0.0025):
    if total is None:
        total = float(tree.count)
    initial_subtotal = subtotal
    final_subtotal = subtotal + tree.count
    item_list = tree.key_to_subtree.items()
    subtotal_for_color = initial_subtotal if level == 0 else ancestor_subtotal
    for key, subtree in sorted(item_list, key=tree_item_count, reverse=True):
        if subtree.count / total <= threshold:
            break
        subtotal_begin = subtotal
        subtotal_end = subtotal + subtree.count
        if level == 0:
            subtotal_for_color = subtotal_begin
        elif (subtotal_end - subtotal_begin) / (final_subtotal -
                                                initial_subtotal) >= 0.66:
            subtotal_for_color = ancestor_subtotal
        else:
            subtotal_for_color = fmod(subtotal_for_color + 0.1 * total, total)
        data.append({
            'inner_radius':
            level,
            'outer_radius':
            level + 1,
            'start_angle': (subtotal / total) * 2 * pi,
            'end_angle': (subtotal_end / total) * 2 * pi,
            'fill_color':
            color_for_wedge(level, total, subtotal_for_color),
            'name':
            key
        })
        tree_to_wedge_data(data,
                           subtree,
                           level=level + 1,
                           total=total,
                           subtotal=subtotal,
                           ancestor_subtotal=subtotal_for_color,
                           threshold=threshold)
        subtotal += subtree.count
        ancestor_subtotal = None
    if False:
        data.append({
            'inner_radius': level,
            'outer_radius': level + 1,
            'start_angle': (subtotal / total) * 2 * pi,
            'end_angle': (final_subtotal / total) * 2 * pi,
            'fill_color': HSL(0, 1, 1),
            'name': '(other)'
        })
Esempio n. 3
0
def color_for_wedge(level, total, subtotal_for_color):
    return HSL(
        int(256 * 0.99999 * (subtotal_for_color / total)),
        1.0,  # 1.0 - subtree.count/float(tree.count), # sat [0,1]
        0.5,  # 0.4+(level*0.2)/6, # light [0=black,1/2=sat,1=white]
        1.0)  # alpha
 def my_colors(self,ii,nn):
     return HSL(360*(ii+1)/nn,1,0.4).to_rgb().to_hex()
def string_to_rgb(name):
    value = sum(bytearray(name, 'utf-8'))
    hue = round(value % 360 / 10) * 10
    # print('{}: {}, {}'.format(name, value, hue))
    return HSL(hue, 0.75, 0.8)
Esempio n. 6
0
from bokeh.models.ranges import FactorRange, DataRange1d
from bokeh.plotting import figure
from bokeh.sampledata.commits import data
from bokeh.transform import factor_cmap
from bokeh.colors import HSL
from bokeh.layouts import row, column
from bokeh.themes import built_in_themes
import math
from hexagonal_clusters import hex_y, hex_x, delta_x, delta_y, scale_factor
from nobel_data import nobel
from bokeh.models.tools import BoxZoomTool, PanTool, WheelZoomTool, ResetTool, HoverTool

output_file('nobel.html')

cmap = {
    "Chemistry": HSL(0, 0.5, 0.5).to_rgb().to_hex(),
    "Medicine": HSL(120, 0.5, 0.5).to_rgb().to_hex(),
    "Physics": HSL(180, 0.5, 0.5).to_rgb().to_hex(),
    "Peace": HSL(240, 0.5, 0.5).to_rgb().to_hex(),
    "Economics": HSL(300, 0.5, 0.5).to_rgb().to_hex(),
    "Literature": HSL(60, 0.5, 0.5).to_rgb().to_hex()
}

source = ColumnDataSource(data={
    "x": [],
    "y": [],
    "Category": nobel['Category']
})

aspect_ratio = 2.4
p = figure(title="Nobel Laureates",