Esempio n. 1
0
def learn(setup_fun, variance):
    #ik, beh, mp_keys, mp_values = cfg.make_approx_cart_dmp(cfg.x0, cfg.g, cfg.execution_time, cfg.dt)
    #ik, beh, mp_keys, mp_values = cfg.make_exact_cart_dmp(cfg.x0, cfg.g, cfg.execution_time, cfg.dt)
    ik, beh, mp_keys, mp_values = cfg.make_joint_dmp(cfg.x0, cfg.g,
                                                     cfg.execution_time,
                                                     cfg.dt)

    env = Pendulum(x0=cfg.x0,
                   g=cfg.g,
                   execution_time=cfg.execution_time,
                   dt=cfg.dt)

    opt = CMAESOptimizer(variance=variance, random_state=0)
    bs = BlackBoxSearch(beh, opt)
    controller = Controller(environment=env,
                            behavior_search=bs,
                            n_episodes=n_episodes,
                            verbose=2)
    rewards = controller.learn(mp_keys, mp_values)

    best = bs.get_best_behavior()
    best_params = best.get_params()
    np.save("best_params_pendulum_joint.npy", best_params)
    reward = controller.episode_with(best)

    ax = env.plot()
    plt.show()
Esempio n. 2
0
def learn(name, setup_fun, run):
    ik, beh, mp_keys, mp_values = setup_fun(cfg.x0, cfg.g, cfg.execution_time,
                                            cfg.dt)
    env = ViaPointEnvironment(ik,
                              cfg.x0,
                              cfg.via_points,
                              cfg.execution_time,
                              cfg.dt,
                              cfg.qlo,
                              cfg.qhi,
                              penalty_vel=cfg.penalty_vel,
                              penalty_acc=cfg.penalty_acc,
                              penalty_via_point=cfg.penalty_via_point)

    opt = CMAESOptimizer(variance=cfg.variance[name], random_state=run)
    bs = BlackBoxSearch(beh, opt)
    controller = Controller(environment=env,
                            behavior_search=bs,
                            n_episodes=n_episodes,
                            verbose=0)
    rewards = controller.learn(mp_keys, mp_values)

    best = bs.get_best_behavior()
    reward = controller.episode_with(best)

    return name, rewards, reward.sum()
Esempio n. 3
0
def test_missing_behavior_search():
    ctrl = Controller(environment=ObjectiveFunction())
    beh = DummyBehavior(initial_params=np.array([0.0, 0.0]))
    beh.init(0, 2)
    feedback = ctrl.episode_with(beh)
    assert_equal(len(feedback), 1)
    assert_less(feedback[0], ctrl.environment.get_maximum_feedback())
Esempio n. 4
0
def test_smoke():
    dmp_seq, _ = create_dmp_seq(n_task_dims=1)

    controller = Controller({"Controller":
                             {"record_inputs": True},
                             "Environment":
                             {"type": "bolero.environment.OptimumTrajectory",
                              "x0": np.zeros(1),
                              "g": np.ones(1),
                              "execution_time": 1.0,
                              "dt": 0.01}})
    controller.episode_with(dmp_seq)

    params = np.random.randn(dmp_seq.get_n_params())
    dmp_seq.set_params(params)
    assert_equal(dmp_seq.get_n_params(), dmp_seq.get_params().size)
    assert_equal(dmp_seq.n_weights, 15)
    assert_equal(dmp_seq.get_n_params(), 21)
    params_copy = dmp_seq.get_params()
    assert_array_almost_equal(params, params_copy)
    new_subgoal = [0.5]
    dmp_seq.set_subgoal(2, new_subgoal)
    subgoal = dmp_seq.get_subgoal(2)
    assert_array_almost_equal(new_subgoal, subgoal)
    new_subgoal_velocity = [0.0]
    dmp_seq.set_subgoal_velocity(2, new_subgoal_velocity)
    subgoal_velocity = dmp_seq.get_subgoal_velocity(2)
    assert_array_almost_equal(new_subgoal_velocity, subgoal_velocity)

    X = np.array(controller.inputs_[0])
    assert_equal(len(X), 101)
    assert_almost_equal(X[0, 0], 0.0)
    assert_almost_equal(X[20, 0], 0.5, places=2)
    assert_almost_equal(X[50, 0], 1.0, places=2)
    assert_almost_equal(X[100, 0], 2.0, places=2)
Esempio n. 5
0
def test_record_feedbacks():
    opt = CMAESOptimizer(initial_params=np.zeros(2))
    ctrl = Controller(environment=ObjectiveFunction(),
                      behavior_search=JustOptimizer(opt),
                      record_feedbacks=True, accumulate_feedbacks=False)
    returns = ctrl.learn()
    assert_array_equal(returns, ctrl.feedbacks_)
Esempio n. 6
0
def test_learn_controller_cmaes_sphere():
    opt = CMAESOptimizer(initial_params=np.zeros(2), random_state=0)
    ctrl = Controller(environment=ObjectiveFunction(random_state=0),
                      behavior_search=JustOptimizer(opt),
                      n_episodes=200)
    returns = ctrl.learn()
    dist_to_maximum = returns.max() - ctrl.environment.get_maximum_feedback()
    assert_greater(dist_to_maximum, -1e-5)
Esempio n. 7
0
def test_record_inputs():
    opt = CMAESOptimizer(initial_params=np.zeros(2))
    ctrl = Controller(environment=ObjectiveFunction(),
                      behavior_search=JustOptimizer(opt),
                      record_inputs=True)
    returns = ctrl.learn()
    assert_equal(len(returns), 10)
    assert_equal(np.array(ctrl.inputs_).shape, (10, 1, 2))
Esempio n. 8
0
def test_record_test_results():
    opt = CMAESOptimizer(initial_params=np.zeros(2))
    ctrl = Controller(environment=ObjectiveFunction(),
                      behavior_search=JustOptimizer(opt),
                      n_episodes_before_test=10, n_episodes=100)
    ctrl.learn()
    results = np.array(ctrl.test_results_)
    assert_equal(results.shape[0], 10)
    assert_true(np.all(results[:-1] <= results[1:]))
Esempio n. 9
0
def test_controller_cmaes_sphere_via_config():
    config = {
        "Environment": {"type": "bolero.environment.ObjectiveFunction"},
        "BehaviorSearch": {
            "type": "bolero.behavior_search.JustOptimizer",
            "optimizer": {"type": "bolero.optimizer.CMAESOptimizer",
                          "initial_params": np.zeros(2)}}
    }
    ctrl = Controller(config)
    returns = ctrl.learn()
    assert_equal(len(returns), 10)
def test_mc_rl():
    env = OpenAiGym("FrozenLake-v0", render=False, seed=1)
    try:
        env.init()
    except ImportError:
        raise SkipTest("gym is not installed")
    bs = MonteCarloRL(env.get_discrete_action_space(), random_state=1)
    ctrl = Controller(environment=env, behavior_search=bs, n_episodes=10000,
                    finish_after_convergence=True)
    returns = ctrl.learn()
    assert_less(len(returns), 1000)
    beh = bs.get_best_behavior()
    rewards = ctrl.episode_with(beh)
    assert_equal(sum(rewards), 1.0)
Esempio n. 11
0
def test_pickle_controller():
    names = ["CMAESOptimizer", "REPSOptimizer"]
    optimizers = [CMAESOptimizer, REPSOptimizer]
    for name, Optimizer in zip(names, optimizers):
        opt = Optimizer(initial_params=np.zeros(2))
        ctrl = Controller(environment=ObjectiveFunction(),
                          behavior_search=JustOptimizer(opt))
        assert_pickle(name, ctrl)
Esempio n. 12
0
def learn(name, run, setup_fun, variance):
    ik, beh, mp_keys, mp_values = setup_fun(
            cfg.x0, cfg.g, cfg.execution_time, cfg.dt)

    env = Pendulum(
        x0=cfg.x0, g=cfg.g,
        execution_time=cfg.execution_time, dt=cfg.dt
    )

    opt = CMAESOptimizer(variance=variance, random_state=run)
    bs = BlackBoxSearch(beh, opt)
    controller = Controller(environment=env, behavior_search=bs,
                            n_episodes=n_episodes, verbose=2)
    rewards = controller.learn(mp_keys, mp_values)

    best = bs.get_best_behavior()
    reward = controller.episode_with(best)

    return name, rewards, reward.sum()
Esempio n. 13
0
to solve the problem and policy search algorithm usually work very well in
this domain.
"""
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from bolero.environment import OpenAiGym
from bolero.behavior_search import BlackBoxSearch
from bolero.optimizer import CMAESOptimizer
from bolero.representation import LinearBehavior
from bolero.controller import Controller

beh = LinearBehavior()
env = OpenAiGym("CartPole-v0", render=False, seed=0)
opt = CMAESOptimizer(variance=10.0**2, random_state=0)
bs = BlackBoxSearch(beh, opt)
controller = Controller(environment=env, behavior_search=bs, n_episodes=300)

rewards = controller.learn()
controller.episode_with(bs.get_best_behavior())

plt.figure()
ax = plt.subplot(111)
ax.set_title("Optimization progress")
ax.plot(rewards)
ax.set_xlabel("Episode")
ax.set_ylabel("Reward")
ax.set_ylim(-10, 210)
plt.show()
Esempio n. 14
0
def test_controller_cmaes_sphere():
    opt = CMAESOptimizer(initial_params=np.zeros(2))
    ctrl = Controller(environment=ObjectiveFunction(),
                      behavior_search=JustOptimizer(opt))
    returns = ctrl.learn()
    assert_equal(len(returns), 10)
Esempio n. 15
0
def test_learning_fails_with_missing_behavior_search():
    controller = Controller(environment=ObjectiveFunction())
    assert_raises_regexp(ValueError, "BehaviorSearch is required",
                         controller.learn)
Esempio n. 16
0
import numpy as np
from bolero.wrapper import CppBLLoader
from bolero.controller import Controller
from bolero.behavior_search import BlackBoxSearch
from bolero.optimizer import CMAESOptimizer
from dmp_behavior import DMPBehavior
from first_feedback import FirstFeedback


if __name__ == "__main__":
    environment_name = "throwing_environment"
    bll = CppBLLoader()
    bll.load_library(environment_name)
    env = bll.acquire_contextual_environment(environment_name)
    env = FirstFeedback(env, random_state=0)
    env.request_context(np.array([1.5, 1.0]))

    beh = DMPBehavior(dt=0.01, execution_time=0.5, n_features=5)

    opt = CMAESOptimizer(variance=200.0 ** 2, active=True, random_state=0)

    bs = BlackBoxSearch(beh, opt)

    ctrl = Controller(environment=env, behavior_search=bs, n_episodes=200,
                      verbose=2)
    meta_params = [np.array([0.0, -0.8, -0.7]), np.array([0.5, 0.5, 0.5]),
                   np.array([0.0, 0.5, 0.5])]
    print(ctrl.learn(["x0", "g", "gd"], meta_params))
Esempio n. 17
0
                              cfg.via_points,
                              cfg.execution_time,
                              cfg.dt,
                              cfg.qlo,
                              cfg.qhi,
                              penalty_vel=cfg.penalty_vel,
                              penalty_acc=cfg.penalty_acc,
                              penalty_via_point=cfg.penalty_via_point,
                              log_to_stdout=True)
    env.init()

    beh.init(env.get_num_outputs(), env.get_num_inputs())
    best_params = np.load("best_params_viapoint_%s.npy" % name)
    beh.set_params(best_params)

    controller = Controller(environment=env, verbose=2)

    initial_param_value = best_params[modified_parameter]
    offset = np.linspace(-param_range / 2.0, param_range / 2.0, n_steps)

    returns = np.empty(n_steps)
    for i in range(n_steps):
        params = np.copy(best_params)
        params[modified_parameter] = initial_param_value + offset[i]
        beh.set_params(params)
        beh.reset()

        rewards = controller.episode_with(beh, mp_keys, mp_values)
        returns[i] = np.sum(rewards)

    plt.plot(offset,
                        g,
                        execution_time,
                        dt,
                        obstacles,
                        penalty_goal_dist=10000.0,
                        penalty_start_dist=10000.0,
                        penalty_obstacle=1000.0,
                        penalty_length=10.,
                        hide_acc_from_interface=True,
                        use_covar=True)
opt = CMAESOptimizer(variance=0.1**2,
                     random_state=0,
                     initial_params=beh.get_params())
bs = BlackBoxSearch(beh, opt)
controller = Controller(environment=env,
                        behavior_search=bs,
                        n_episodes=n_episodes,
                        record_inputs=True)

rewards = controller.learn(["x0", "g"], [x0, g])
controller.episode_with(bs.get_best_behavior(), ["x0", "g"], [x0, g])
X = np.asarray(controller.inputs_[-1])
X_hist = np.asarray(controller.inputs_)

plt.figure(figsize=(8, 5))
ax = plt.subplot(121)
ax.set_title("Optimization progress")
ax.plot(rewards)
ax.set_xlabel("Episode")
ax.set_ylabel("Reward")

ax = plt.subplot(122, aspect="equal")
Esempio n. 19
0
    for n_task_dims in test_task_dims:
        dmp_seq, subgoals = create_dmp_seq(n_task_dims=n_task_dims)
        dmp_seq.set_params(dmp_seq.get_params())
        for i in range(len(subgoals)):
            assert_equal(len(dmp_seq.get_subgoal_velocity(i)), n_task_dims)


if __name__ == "__main__":
    import matplotlib.pyplot as plt
    dmp_seq, _ = create_dmp_seq(2)

    controller = Controller({"Controller":
                             {"record_outputs": True},
                             "Environment":
                             {"type": "bolero.environment.OptimumTrajectory",
                              "x0": np.zeros(2),
                              "g": np.ones(2),
                              "execution_time": 1.0,
                              "dt": 0.01}},
                            record_inputs=True)
    controller.episode_with(dmp_seq)
    X = np.array(controller.outputs_)[0]

    plt.figure()
    plt.plot(X[:, 0], X[:, 1])
    plt.figure()
    plt.plot(X[:, 2])
    plt.figure()
    plt.plot(X[:, 3])
    plt.show()
Esempio n. 20
0
                          cfg.qhi,
                          penalty_vel=cfg.penalty_vel,
                          penalty_acc=cfg.penalty_acc,
                          penalty_via_point=cfg.penalty_via_point,
                          log_to_stdout=True)

if os.path.exists("initial_params.txt"):
    initial_params = np.loadtxt("initial_params.txt")
else:
    initial_params = None
opt = CMAESOptimizer(initial_params=initial_params,
                     variance=cfg.variance["approxik"],
                     random_state=0)
bs = BlackBoxSearch(beh, opt)
controller = Controller(environment=env,
                        behavior_search=bs,
                        n_episodes=1000,
                        verbose=2)
rewards = controller.learn(mp_keys, mp_values)

best = bs.get_best_behavior()
best_params = best.get_params()
np.save("best_params_viapoint_joint.npy", best_params)
reward = controller.episode_with(best)
print(reward.sum())

plt.plot(rewards)
ax = env.plot()
ax.view_init(azim=-110, elev=30)
ax.set_xticks((-0.3, 0.0, 0.3))
ax.set_yticks((0.0, -0.3, -0.6))
ax.set_zticks((0.3, 0.6, 0.9))
Esempio n. 21
0
A simple problem with a discrete state and action space is solved with
a tabular reinforcement learning algorithm. The plot shows the obtained return
for each episode. Successful episodes terminate with the return 1, otherwise
the return is 0. The learning process is stopped when the value function
converged.
"""
print(__doc__)

import matplotlib.pyplot as plt
from bolero.environment import OpenAiGym
from bolero.behavior_search import MonteCarloRL
from bolero.controller import Controller

env = OpenAiGym("FrozenLake-v0", render=False, seed=1)
env.init()
bs = MonteCarloRL(env.get_discrete_action_space(), random_state=1)
ctrl = Controller(environment=env,
                  behavior_search=bs,
                  n_episodes=10000,
                  finish_after_convergence=True)
rewards = ctrl.learn()

plt.figure()
ax = plt.subplot(111)
ax.set_title("Learning progress")
ax.plot(rewards)
ax.set_xlabel("Episode")
ax.set_ylabel("Reward")
plt.show()