Esempio n. 1
0
def plotCDFGraphSimple(cdf_data, avg_data, pc99_data, xLabel, yLabel, title):

    colors = ('b', 'g', 'r', 'c', 'm', 'y')

    # We must have same number of lines for CDF, avg and pc99
    assert (len(cdf_data) == len(avg_data))
    assert (len(avg_data) == len(pc99_data))

    plot = boomslang.Plot()

    # Plot all CDF lines
    for index in xrange(len(cdf_data)):
        data = cdf_data[index]

        cdf_line = boomslang.Utils.getCDF(data)
        cdf_line.lineWidth = 2
        cdf_line.color = colors[index % len(colors)]
        plot.add(cdf_line)

    # Plot VLines for avg
    avg_vline = boomslang.VLine(color="green", lineStyle="--")
    avg_vline.xValues = avg_data
    avg_vline.label = "Avg."
    plot.add(avg_vline)

    # Plot VLines for pc99
    pc99_vline = boomslang.VLine(color="red", lineStyle="--")
    pc99_vline.xValues = pc99_data
    pc99_vline.label = "99th perc."
    plot.add(pc99_vline)

    # Set title and axes labels
    plot.setXLabel(xLabel)
    plot.setYLabel(yLabel)
    plot.setTitle(title)
    plot.hasLegend()

    # Font size
    plot.setLegendLabelSize("small")
    plot.setTitleSize("small")
    plot.setAxesLabelSize("small")
    plot.setXTickLabelSize("small")
    plot.setYTickLabelSize("small")

    # Grid
    plot.grid.color = "lightgray"
    plot.grid.style = "dotted"
    plot.grid.lineWidth = 0.8
    plot.grid.visible = True

    return plot
def plotCDFGraphFromHist(hist, avg, pc99, pc999, xLabel, yLabel, title):

    plot = boomslang.Plot()

    # Plot the CDF line
    cdf_line = cdfLineFromHist(hist, color="blue", width=2)
    plot.add(cdf_line)

    # Plot VLine for avg
    avg_vline = boomslang.VLine(color="green", lineStyle="--")
    avg_vline.xValues = [avg]
    avg_vline.label = "Avg."
    plot.add(avg_vline)

    # Plot VLine for pc99
    pc99_vline = boomslang.VLine(color="red", lineStyle="--")
    pc99_vline.xValues = [pc99]
    pc99_vline.label = "99th perc."
    plot.add(pc99_vline)

    # Plot VLine for pc999
    pc999_vline = boomslang.VLine(color="magenta", lineStyle="--")
    pc999_vline.xValues = [pc999]
    pc999_vline.label = "99.9th perc."
    plot.add(pc999_vline)

    # Set title and axes labels
    plot.setXLabel(xLabel)
    plot.setYLabel(yLabel)
    plot.setTitle(title)
    plot.hasLegend()

    # Font size
    plot.setLegendLabelSize("small")
    plot.setTitleSize("small")
    plot.setAxesLabelSize("small")
    plot.setXTickLabelSize("small")
    plot.setYTickLabelSize("small")

    # Grid
    plot.grid.color = "lightgray"
    plot.grid.style = "dotted"
    plot.grid.lineWidth = 0.8
    plot.grid.visible = True

    return plot
Esempio n. 3
0
def plotClusterBarComparisonDirs(
        dir2props_dict,  # dict
        subplot_props,  # list
        cluster_props,  # list
        trial_props,  # list
        fn_sort_subplots,
        fn_sort_clusters,
        fn_sort_majorgroups,
        fn_get_subplot_title,
        fn_get_cluster_label,
        fn_get_majorgroup_label,
        fn_get_datapoint,
        xLabel,
        yLabel,
        layout=None):

    # 1. Turn each directory's set of prop=val strings into a dictionary to
    #     easily look up the value of a particular property for the directory
    dir2prop2val_dict = getDir2Prop2ValDict(dir2props_dict)

    # 2. Find all the common and unique properties among all directories
    common_props, unique_props = getCommonAndUniqueProperties(dir2props_dict)

    # 3A. Find all unique values of the subplot properties
    subplot2dir_dict = getDirGroupsByProperty(dir2props_dict,
                                              subplot_props,
                                              ignore=False)
    unique_subplots = subplot2dir_dict.keys()
    # 3B. Sort the subplots
    fn_sort_subplots(unique_subplots)

    # 4. Find all unique values of the cluster properties
    cluster2dir_dict = getDirGroupsByProperty(dir2props_dict,
                                              cluster_props,
                                              ignore=False)
    unique_clusters = cluster2dir_dict.keys()
    # 4B. Sort the clusters
    fn_sort_clusters(unique_clusters)

    # 5. Find all unique major groupings or configurations:
    #    Ignore the properties in subplot_props, cluster_props, and
    #    trial_props. The other properties constitute the majorgroup.
    #    Each majorgroup is denoted by a frozenset of prop=val strings that
    #    are unique to the majorgroup.
    majorgroup2dir_dict = getDirGroupsByProperty(dir2props_dict,
                                                 subplot_props +
                                                 cluster_props + trial_props,
                                                 ignore=True)
    unique_majorgroups = majorgroup2dir_dict.keys()

    # 6A. Allocate a separate xValue in the graphs for each cluster
    cluster2xValue_dict = {}
    for xValue in xrange(len(unique_clusters)):
        cluster2xValue_dict[unique_clusters[xValue]] = xValue

    # 6B. Compute a list of labels for the clusters (in the same order as
    #     unique_clusters)
    unique_cluster_labels = [
        fn_get_cluster_label(cluster) for cluster in unique_clusters
    ]

    # 6C. Allocate a color for bar graphs of each major group
    colors = ('y', 'g', 'c', 'r', 'm', 'b')
    majorgroup2color_dict = {}
    for index, majorgroup in enumerate(unique_majorgroups):
        majorgroup2color_dict[majorgroup] = colors[index % len(colors)]

    # 7. For each unique subplot,
    #    For each unique majorgroup,
    #    For each unique cluster:
    #        Create an individual datapoints list
    #        Create a list of experiment directories
    datapoints_dict = {}
    clusterdir_dict = {}
    for subplot in unique_subplots:
        datapoints_dict[subplot] = {}
        clusterdir_dict[subplot] = {}
        for majorgroup in unique_majorgroups:
            datapoints_dict[subplot][majorgroup] = {}
            clusterdir_dict[subplot][majorgroup] = {}
            for cluster in unique_clusters:
                datapoints_dict[subplot][majorgroup][cluster] = []
                clusterdir_dict[subplot][majorgroup][cluster] = []

    # 8. Visit each directory and populate the corresponding datapoints list for
    #    that directory. Also populate the directory in the clusterdir_dict.
    for directory, prop_vals in dir2props_dict.iteritems():
        # Find the subplot, majorgroup, and cluster of the directory
        subplot = onlyIncludeProps(prop_vals, subplot_props)
        majorgroup = removeIgnoredProps(
            prop_vals, subplot_props + cluster_props + trial_props)
        cluster = onlyIncludeProps(prop_vals, cluster_props)

        # Compute the datapoint for the directory
        datapoint = fn_get_datapoint(directory)

        # Add the data point
        datapoints_dict[subplot][majorgroup][cluster].append(datapoint)

        # Add directory to the clusterdir_dict
        clusterdir_dict[subplot][majorgroup][cluster].append(directory)

    # 9. For each (subplot, majorgroup) combo, create a bar graph
    all_bars_dict = {}
    for subplot, subplot_dict in datapoints_dict.iteritems():
        all_bars_dict[subplot] = {}

        for majorgroup, majorgroup_dict in subplot_dict.iteritems():
            majorgroup_label = fn_get_majorgroup_label(majorgroup,
                                                       common_props)

            bar = barGraph([], [], [],
                           color=majorgroup2color_dict[majorgroup],
                           label=majorgroup_label)
            all_bars_dict[subplot][majorgroup] = bar

    # 10. Compute average and stddev for each (subplot, majorgroup, cluster)
    #     combination. This represents the avg and stddev across multiple
    #     trials. Add these to the corresponding bar graphs.
    for subplot, subplot_dict in datapoints_dict.iteritems():
        for majorgroup, majorgroup_dict in subplot_dict.iteritems():
            bar_values = []
            for cluster, datapoints in majorgroup_dict.iteritems():
                avg = numpy.average(datapoints)
                stddev = numpy.std(datapoints)

                # Append an (xValue, yValue, yError) tuple
                bar_values.append((cluster2xValue_dict[cluster], avg, stddev))

            # Sort the tuples by xValue and assign it to the bar graph.
            # (Boomslang requires the values to be sorted)
            bar = all_bars_dict[subplot][majorgroup]
            bar_values.sort(key=lambda tup: tup[0])
            # Unzip bar_values into individual lists
            (bar.xValues, bar.yValues, bar.yErrors) = zip(*bar_values)

    # 11. Create a clusteredBars Plot for each subplot.
    #     Place all the Plots in a single PlotLayout
    if not layout:
        layout = boomslang.PlotLayout()
    for subplot in unique_subplots:
        title = fn_get_subplot_title(subplot)

        subplot_bars = [
            all_bars_dict[subplot][majorgroup]
            for majorgroup in unique_majorgroups
        ]

        clusteredBars = clusteredBarsGraph(subplot_bars, unique_cluster_labels)

        plot = boomslang.Plot()

        # Add the clusteredbars for the particular subplot
        plot.add(clusteredBars)

        # Set title and axes labels
        plot.setXLabel(xLabel)
        plot.setYLabel(yLabel)
        plot.setTitle(title)
        plot.hasLegend()

        # Font size
        plot.setLegendLabelSize("small")
        plot.setTitleSize("small")
        plot.setAxesLabelSize("small")
        plot.setXTickLabelSize("small")
        plot.setYTickLabelSize("small")

        # Grid
        plot.grid.color = "lightgray"
        plot.grid.style = "dotted"
        plot.grid.lineWidth = 0.8
        plot.grid.visible = True

        # Add the plot to the layout
        layout.addPlot(plot, grouping=title)

    # 12. Update the clusterdir_dict to be index by subplot title, majorgroup
    # labels, and cluster labels.
    unique_subplot_titles = [
        fn_get_subplot_title(subplot) for subplot in unique_subplots
    ]
    unique_majorgroup_labels = [
        fn_get_majorgroup_label(majorgroup, common_props)
        for majorgroup in unique_majorgroups
    ]

    label_clusterdir_dict = {}
    for i, subplot in enumerate(unique_subplots):
        s_title = unique_subplot_titles[i]
        label_clusterdir_dict[s_title] = {}

        for j, majorgroup in enumerate(unique_majorgroups):
            m_label = unique_majorgroup_labels[j]
            label_clusterdir_dict[s_title][m_label] = {}

            for k, cluster in enumerate(unique_clusters):
                c_label = unique_cluster_labels[k]
                label_clusterdir_dict[s_title][m_label][c_label] = (
                    clusterdir_dict[subplot][majorgroup][cluster])

    # 13. Set the order of subplots in the layout
    layout.setGroupOrder(unique_subplot_titles)

    # 14. Return the final PlotLayout and other results
    return (unique_subplot_titles, unique_majorgroup_labels,
            unique_cluster_labels, label_clusterdir_dict, layout)
Esempio n. 4
0
def plotLineComparisonDirs(
        dir2props_dict,  # dict
        xgroup_props,  # list. Props to group along x axis
        line_props,  # list. Properties of line
        fn_sort_lines,
        fn_get_line_label,
        fn_get_xgroup_value,  # xValue. No separate label
        fn_get_datapoint,  # yValue
        xLabel,
        yLabel,
        title,
        xLimits=None,
        yLimits=None,
        for_paper=False):

    # 1. Turn each directory's set of prop=val strings into a dictionary to
    #     easily look up the value of a particular property for the directory
    dir2prop2val_dict = getDir2Prop2ValDict(dir2props_dict)

    # 2. Find all the common and unique properties among all directories
    common_props, unique_props = getCommonAndUniqueProperties(dir2props_dict)

    # 3A. Find all unique values of line properties (each is separate line)
    line2dir_dict = getDirGroupsByProperty(dir2props_dict,
                                           line_props,
                                           ignore=False)
    unique_lines = line2dir_dict.keys()
    # 3B. Sort the lines
    fn_sort_lines(unique_lines)

    # 4. Find all unique values of the xgroup properties
    xgroup2dir_dict = getDirGroupsByProperty(dir2props_dict,
                                             xgroup_props,
                                             ignore=False)
    unique_xgroups = xgroup2dir_dict.keys()

    # 5. For each unique line,
    #    For each unique xgroup,
    #        Create an individual datapoints list
    datapoints_dict = {}
    for line in unique_lines:
        datapoints_dict[line] = {}
        for xgroup in unique_xgroups:
            datapoints_dict[line][xgroup] = []

    # 6. Visit each directory and populate the corresponding datapoints list for
    #    that directory.
    for directory, prop_vals in dir2props_dict.iteritems():
        # Find the line and xgroup of the directory
        line = onlyIncludeProps(prop_vals, line_props)
        xgroup = onlyIncludeProps(prop_vals, xgroup_props)

        # Compute the datapoint for the directory
        datapoint = fn_get_datapoint(directory)

        # Add the data point
        datapoints_dict[line][xgroup].append(datapoint)

    # 7. For each unique line prop, create a line.
    #    Set the label and color for the line
    colors = ('b', 'g', 'r', 'm', 'c', 'y')
    all_lines_dict = {}
    for index, line in enumerate(unique_lines):
        l = boomslang.Line()
        l.color = colors[index % len(colors)]
        l.label = fn_get_line_label(line)
        l.width = 2
        l.marker = 'o'
        all_lines_dict[line] = l

    # 8. Compute average and stddev for each (line, xgroup) combination. This
    #    represents the avg and stddev across multiple trials.
    #    Add these to the corresponding lines.
    for line, line_dict in datapoints_dict.iteritems():
        for xgroup, datapoints in line_dict.iteritems():
            avg = numpy.average(datapoints)
            stddev = numpy.std(datapoints)

            # Append xValue, yValue, yError to the line
            xValue = fn_get_xgroup_value(xgroup)
            all_lines_dict[line].xValues.append(xValue)
            all_lines_dict[line].yValues.append(avg)
            all_lines_dict[line].yErrors.append(stddev)

    # 9. Create the plot and add all the lines
    plot = boomslang.Plot()
    for line in unique_lines:
        plot.add(all_lines_dict[line])

    # 9A. Set title and axes labels
    plot.setXLabel(xLabel)
    plot.setYLabel(yLabel)
    plot.setTitle(title)
    plot.hasLegend()

    # 9B. Font size
    plot.setLegendLabelSize("small")
    plot.setTitleSize("small")
    plot.setAxesLabelSize("small")
    plot.setXTickLabelSize("small")
    plot.setYTickLabelSize("small")

    # 9C. Grid
    plot.grid.color = "lightgray"
    plot.grid.style = "dotted"
    plot.grid.lineWidth = 0.8
    plot.grid.visible = True

    # 9D. xLimits, yLimits
    if xLimits:
        plot.xLimits = xLimits
    if yLimits:
        plot.yLimits = yLimits

    # 10. Set dimensions of the plot
    if for_paper:
        plot.setDimensions(width=4.5)

    # 11. Return the plot
    return plot
def plotMcperfLatencyCDFComparisonDirs(dir2props_dict = {}):

    colors = ('b', 'g', 'r', 'm', 'c', 'y')

    # Find all the common and unique properties among all directories
    common_props, unique_props = getCommonAndUniqueProperties(dir2props_dict)

    plot = boomslang.Plot()

    # Check if all directories have only one unique property
    one_unique_prop = True

    for directory in dir2props_dict:
        if not len(unique_props[directory]) == 1:
            one_unique_prop = False

    # Sort the expt directories if only one unique property is available
    expt_dirs = dir2props_dict.keys()
    if one_unique_prop:
        expt_dirs.sort(key = lambda directory:
                       RL_ORDER.get(getUniqueProp(unique_props[directory]),
                                    len(RL_ORDER) + 1))

    # Iterate through directories and generate CDF lines for each of them
    for index, directory in enumerate(expt_dirs):

        cdf_line = getLatencyCDF(directory)

        cdf_line.color = colors[index % len(colors)]
        cdf_line.width = 2
        if one_unique_prop:
            unique_prop = getUniqueProp(unique_props[directory])
            cdf_line.label = RL_LABEL.get(unique_prop, unique_prop)
        else:
            cdf_line.label = ",".join(unique_props[directory])

        plot.add(cdf_line)

    # Set title and axes labels
    yLabel = "Fractiles"
    if FOR_PAPER:
        xLabel = "Latency (msec)"
        title = ''
    else:
        xLabel = "Memcached transaction latency (usec)"
        title = "CDF of memcached transaction latency"
    plot.setXLabel(xLabel)
    plot.setYLabel(yLabel)
    plot.setTitle(title)
    plot.hasLegend()

    # Font size
    plot.setLegendLabelSize("small")
    plot.setTitleSize("small")
    plot.setAxesLabelSize("small")
    plot.setXTickLabelSize("small")
    plot.setYTickLabelSize("small")

    # Grid
    plot.grid.color = "lightgray"
    plot.grid.style = "dotted"
    plot.grid.lineWidth = 0.8
    plot.grid.visible = True

    # Set xLimit (max latency plotted)
    plot.xLimits = LATENCY_LIMITS

    if FOR_PAPER:
        # Set dimensions of the plot
        plot.setDimensions(width=4.5)

    return plot