def main(_):
    ed.set_seed(FLAGS.seed)
    # setting up output directory
    outdir = FLAGS.outdir
    if '~' in outdir: outdir = os.path.expanduser(outdir)
    os.makedirs(outdir, exist_ok=True)

    is_vector = FLAGS.base_dist in ['mvnormal', 'mvlaplace']

    ((Xtrain, ytrain), (Xtest, ytest)) = blr_utils.get_data()
    N, D = Xtrain.shape
    N_test, D_test = Xtest.shape
    assert D_test == D, 'Test dimension %d different than train %d' % (D_test,
                                                                       D)
    logger.info('D = %d, Ntrain = %d, Ntest = %d' % (D, N, N_test))

    # Solution components
    weights, q_params = [], []
    # L-continous gradient estimate
    lipschitz_estimate = None

    # Metrics to log
    times_filename = os.path.join(outdir, 'times.csv')
    open(times_filename, 'w').close()

    # (mean, +- std)
    elbos_filename = os.path.join(outdir, 'elbos.csv')
    logger.info('saving elbos to, %s' % elbos_filename)
    open(elbos_filename, 'w').close()

    rocs_filename = os.path.join(outdir, 'roc.csv')
    logger.info('saving rocs to, %s' % rocs_filename)
    open(rocs_filename, 'w').close()

    gap_filename = os.path.join(outdir, 'gap.csv')
    open(gap_filename, 'w').close()

    step_filename = os.path.join(outdir, 'steps.csv')
    open(step_filename, 'w').close()

    # (mean, std)
    ll_train_filename = os.path.join(outdir, 'll_train.csv')
    open(ll_train_filename, 'w').close()
    ll_test_filename = os.path.join(outdir, 'll_test.csv')
    open(ll_test_filename, 'w').close()

    # (bin_ac_train, bin_ac_test)
    bin_ac_filename = os.path.join(outdir, 'bin_ac.csv')
    open(bin_ac_filename, 'w').close()

    # 'adafw', 'ada_afw', 'ada_pfw'
    if FLAGS.fw_variant.startswith('ada'):
        lipschitz_filename = os.path.join(outdir, 'lipschitz.csv')
        open(lipschitz_filename, 'w').close()

        iter_info_filename = os.path.join(outdir, 'iter_info.txt')
        open(iter_info_filename, 'w').close()

    for t in range(FLAGS.n_fw_iter):
        g = tf.Graph()
        with g.as_default():
            sess = tf.InteractiveSession()
            with sess.as_default():
                tf.set_random_seed(FLAGS.seed)

                # Build Model
                w = Normal(loc=tf.zeros(D, tf.float32),
                           scale=tf.ones(D, tf.float32))

                X = tf.placeholder(tf.float32, [None, D])
                y = Bernoulli(logits=ed.dot(X, w))

                p_joint = blr_utils.Joint(Xtrain, ytrain, sess,
                                          FLAGS.n_monte_carlo_samples, logger)

                # vectorized Model evaluations
                n_test_samples = 100
                W = tf.placeholder(tf.float32, [n_test_samples, D])
                y_data = tf.placeholder(tf.float32, [None])  # N -> (N, n_test)
                y_data_matrix = tf.tile(tf.expand_dims(y_data, 1),
                                        (1, n_test_samples))
                pred_logits = tf.matmul(X, tf.transpose(W))  # (N, n_test)
                ypred = tf.sigmoid(tf.reduce_mean(pred_logits, axis=1))
                pY = Bernoulli(logits=pred_logits)  # (N, n_test)
                log_likelihoods = pY.log_prob(y_data_matrix)  # (N, n_test)
                log_likelihood_expectation = tf.reduce_mean(log_likelihoods,
                                                            axis=1)  # (N, )
                ll_mean, ll_std = tf.nn.moments(log_likelihood_expectation,
                                                axes=[0])

                if t == 0:
                    fw_iterates = {}
                else:
                    # Current solution
                    prev_components = [
                        coreutils.base_loc_scale(FLAGS.base_dist,
                                                 c['loc'],
                                                 c['scale'],
                                                 multivariate=is_vector)
                        for c in q_params
                    ]
                    qtw_prev = coreutils.get_mixture(weights, prev_components)
                    fw_iterates = {w: qtw_prev}

                # s is the solution to LMO, random initialization
                s = coreutils.construct_base(FLAGS.base_dist, [D],
                                             t,
                                             's',
                                             multivariate=is_vector)

                sess.run(tf.global_variables_initializer())

                total_time = 0.
                inference_time_start = time.time()
                # Run relbo to solve LMO problem
                # If the first atom is being selected through running LMO
                # it is equivalent to running vi on a uniform prior
                # Since uniform is not in our variational family try
                # only random element (without LMO inference) as initial iterate
                if FLAGS.iter0 == 'vi' or t > 0:
                    inference = relbo.KLqp({w: s},
                                           fw_iterates=fw_iterates,
                                           data={
                                               X: Xtrain,
                                               y: ytrain
                                           },
                                           fw_iter=t)
                    inference.run(n_iter=FLAGS.LMO_iter)
                inference_time_end = time.time()
                # compute only step size selection time
                #total_time += float(inference_time_end - inference_time_start)

                loc_s = s.mean().eval()
                scale_s = s.stddev().eval()

                # Evaluate the next step
                step_result = {}
                if t == 0:
                    # Initialization, q_0
                    q_params.append({'loc': loc_s, 'scale': scale_s})
                    weights.append(1.)
                    if FLAGS.fw_variant.startswith('ada'):
                        lipschitz_estimate = opt.adafw_linit(s, p_joint)
                    step_type = 'init'
                elif FLAGS.fw_variant == 'fixed':
                    start_step_time = time.time()
                    step_result = opt.fixed(weights, q_params, qtw_prev, loc_s,
                                            scale_s, s, p_joint, t)
                    end_step_time = time.time()
                    total_time += float(end_step_time - start_step_time)
                elif FLAGS.fw_variant == 'adafw':
                    start_step_time = time.time()
                    step_result = opt.adaptive_fw(weights, q_params, qtw_prev,
                                                  loc_s, scale_s, s, p_joint,
                                                  t, lipschitz_estimate)
                    end_step_time = time.time()
                    total_time += float(end_step_time - start_step_time)
                    step_type = step_result['step_type']
                    if step_type == 'adaptive':
                        lipschitz_estimate = step_result['l_estimate']
                elif FLAGS.fw_variant == 'ada_pfw':
                    start_step_time = time.time()
                    step_result = opt.adaptive_pfw(weights, q_params, qtw_prev,
                                                   loc_s, scale_s, s, p_joint,
                                                   t, lipschitz_estimate)
                    end_step_time = time.time()
                    total_time += float(end_step_time - start_step_time)
                    step_type = step_result['step_type']
                    if step_type in ['adaptive', 'drop']:
                        lipschitz_estimate = step_result['l_estimate']
                elif FLAGS.fw_variant == 'ada_afw':
                    start_step_time = time.time()
                    step_result = opt.adaptive_afw(weights, q_params, qtw_prev,
                                                   loc_s, scale_s, s, p_joint,
                                                   t, lipschitz_estimate)
                    end_step_time = time.time()
                    total_time += float(end_step_time - start_step_time)
                    step_type = step_result['step_type']
                    if step_type in ['adaptive', 'away', 'drop']:
                        lipschitz_estimate = step_result['l_estimate']
                elif FLAGS.fw_variant == 'line_search':
                    start_step_time = time.time()
                    step_result = opt.line_search_dkl(weights, q_params,
                                                      qtw_prev, loc_s, scale_s,
                                                      s, p_joint, t)
                    end_step_time = time.time()
                    total_time += float(end_step_time - start_step_time)
                    step_type = step_result['step_type']
                else:
                    raise NotImplementedError(
                        'Step size variant %s not implemented' %
                        FLAGS.fw_variant)

                if t == 0:
                    gamma = 1.
                    new_components = [s]
                else:
                    q_params = step_result['params']
                    weights = step_result['weights']
                    gamma = step_result['gamma']
                    new_components = [
                        coreutils.base_loc_scale(FLAGS.base_dist,
                                                 c['loc'],
                                                 c['scale'],
                                                 multivariate=is_vector)
                        for c in q_params
                    ]
                qtw_new = coreutils.get_mixture(weights, new_components)

                # Log metrics for current iteration
                logger.info('total time %f' % total_time)
                append_to_file(times_filename, total_time)

                elbo_t = elbo(qtw_new, p_joint, return_std=False)
                # testing elbo directory from KLqp
                elbo_loss = elboModel.KLqp({w: qtw_new},
                                           data={
                                               X: Xtrain,
                                               y: ytrain
                                           })
                res_update = elbo_loss.run()

                logger.info("iter, %d, elbo, %.2f loss %.2f" %
                            (t, elbo_t, res_update['loss']))
                append_to_file(elbos_filename,
                               "%f,%f" % (elbo_t, res_update['loss']))

                logger.info('iter %d, gamma %.4f' % (t, gamma))
                append_to_file(step_filename, gamma)

                if t > 0:
                    gap_t = step_result['gap']
                    logger.info('iter %d, gap %.4f' % (t, gap_t))
                    append_to_file(gap_filename, gap_t)

                if FLAGS.fw_variant.startswith('ada'):
                    append_to_file(lipschitz_filename, lipschitz_estimate)
                    append_to_file(iter_info_filename, step_type)
                    logger.info('lt = %.5f, iter_type = %s' %
                                (lipschitz_estimate, step_type))

                # get weight samples to evaluate expectations
                w_samples = qtw_new.sample([n_test_samples]).eval()
                ll_train_mean, ll_train_std = sess.run([ll_mean, ll_std],
                                                       feed_dict={
                                                           W: w_samples,
                                                           X: Xtrain,
                                                           y_data: ytrain
                                                       })
                logger.info("iter, %d, train ll, %.2f +/- %.2f" %
                            (t, ll_train_mean, ll_train_std))
                append_to_file(ll_train_filename,
                               "%f,%f" % (ll_train_mean, ll_train_std))

                ll_test_mean, ll_test_std, y_test_pred = sess.run(
                    [ll_mean, ll_std, ypred],
                    feed_dict={
                        W: w_samples,
                        X: Xtest,
                        y_data: ytest
                    })
                logger.info("iter, %d, test ll, %.2f +/- %.2f" %
                            (t, ll_test_mean, ll_test_std))
                append_to_file(ll_test_filename,
                               "%f,%f" % (ll_test_mean, ll_test_std))

                roc_score = roc_auc_score(ytest, y_test_pred)
                logger.info("iter %d, roc %.4f" % (t, roc_score))
                append_to_file(rocs_filename, roc_score)

                y_post = ed.copy(y, {w: qtw_new})
                # eq. to y = Bernoulli(logits=ed.dot(X, qtw_new))

                ed_train_ll = ed.evaluate('log_likelihood',
                                          data={
                                              X: Xtrain,
                                              y_post: ytrain,
                                          })
                ed_test_ll = ed.evaluate('log_likelihood',
                                         data={
                                             X: Xtest,
                                             y_post: ytest,
                                         })
                logger.info("edward train ll %.2f test ll %.2f" %
                            (ed_train_ll, ed_test_ll))

                bin_ac_train = ed.evaluate('binary_accuracy',
                                           data={
                                               X: Xtrain,
                                               y_post: ytrain,
                                           })
                bin_ac_test = ed.evaluate('binary_accuracy',
                                          data={
                                              X: Xtest,
                                              y_post: ytest,
                                          })
                append_to_file(bin_ac_filename,
                               "%f,%f" % (bin_ac_train, bin_ac_test))
                logger.info(
                    "edward binary accuracy train ll %.2f test ll %.2f" %
                    (bin_ac_train, bin_ac_test))

                mse_test = ed.evaluate('mean_squared_error',
                                       data={
                                           X: Xtest,
                                           y_post: ytest,
                                       })
                logger.info("edward mse test ll %.2f" % (mse_test))

            sess.close()
        tf.reset_default_graph()
def main(argv):
    del argv

    outdir = FLAGS.outdir
    if '~' in outdir: outdir = os.path.expanduser(outdir)
    os.makedirs(outdir, exist_ok=True)

    # Files to log metrics
    times_filename = os.path.join(outdir, 'times.csv')
    elbos_filename = os.path.join(outdir, 'elbos.csv')
    objective_filename = os.path.join(outdir, 'kl.csv')
    reference_filename = os.path.join(outdir, 'ref_kl.csv')
    step_filename = os.path.join(outdir, 'steps.csv')
    # 'adafw', 'ada_afw', 'ada_pfw'
    if FLAGS.fw_variant.startswith('ada'):
        curvature_filename = os.path.join(outdir, 'curvature.csv')
        gap_filename = os.path.join(outdir, 'gap.csv')
        iter_info_filename = os.path.join(outdir, 'iter_info.txt')
    elif FLAGS.fw_variant == 'line_search':
        goutdir = os.path.join(outdir, 'gradients')

    # empty the files present in the folder already
    open(times_filename, 'w').close()
    open(elbos_filename, 'w').close()
    open(objective_filename, 'w').close()
    open(reference_filename, 'w').close()
    open(step_filename, 'w').close()
    # 'adafw', 'ada_afw', 'ada_pfw'
    if FLAGS.fw_variant.startswith('ada'):
        open(curvature_filename, 'w').close()
        append_to_file(curvature_filename, "c_local,c_global")
        open(gap_filename, 'w').close()
        open(iter_info_filename, 'w').close()
    elif FLAGS.fw_variant == 'line_search':
        os.makedirs(goutdir, exist_ok=True)

    for i in range(FLAGS.n_fw_iter):
        # NOTE: First iteration (t = 0) is initialization
        g = tf.Graph()
        with g.as_default():
            tf.set_random_seed(FLAGS.seed)
            sess = tf.InteractiveSession()
            with sess.as_default():
                p, mus, stds = create_target_dist()

                # current iterate (solution until now)
                if FLAGS.init == 'random':
                    muq = np.random.randn(D).astype(np.float32)
                    stdq = softplus(np.random.randn(D).astype(np.float32))
                    raise ValueError
                else:
                    muq = mus[0]
                    stdq = stds[0]

                # 1 correct LMO
                t = 1
                comps = [{'loc': muq, 'scale_diag': stdq}]
                weights = [1.0]
                curvature_estimate = opt.adafw_linit()

                qtx = MultivariateNormalDiag(
                    loc=tf.convert_to_tensor(muq, dtype=tf.float32),
                    scale_diag=tf.convert_to_tensor(stdq, dtype=tf.float32))
                fw_iterates = {p: qtx}

                # calculate kl-div with 1 component
                objective_old = kl_divergence(qtx, p).eval()
                logger.info("kl with init %.4f" % (objective_old))
                append_to_file(reference_filename, objective_old)

                # s is the solution to LMO. It is initialized randomly
                # mu ~ N(0, 1), std ~ softplus(N(0, 1))
                s = coreutils.construct_multivariatenormaldiag([D], t, 's')

                sess.run(tf.global_variables_initializer())

                total_time = 0
                start_inference_time = time.time()
                if FLAGS.LMO == 'vi':
                    # we have to iterate over parameter space
                    raise ValueError
                    inference = relbo.KLqp({p: s},
                                           fw_iterates=fw_iterates,
                                           fw_iter=t)
                    inference.run(n_iter=FLAGS.LMO_iter)
                # s now contains solution to LMO
                end_inference_time = time.time()

                mu_s = s.mean().eval()
                cov_s = s.stddev().eval()

                # NOTE: keep only step size time
                #total_time += end_inference_time - start_inference_time

                # compute step size to update the next iterate
                step_result = {}
                if FLAGS.fw_variant == 'fixed':
                    gamma = 2. / (t + 2.)
                elif FLAGS.fw_variant == 'line_search':
                    start_line_search_time = time.time()
                    step_result = opt.line_search_dkl(
                        weights, [c['loc'] for c in comps],
                        [c['scale_diag']
                         for c in comps], qtx, mu_s, cov_s, s, p, t)
                    end_line_search_time = time.time()
                    total_time += (end_line_search_time -
                                   start_line_search_time)
                    gamma = step_result['gamma']
                elif FLAGS.fw_variant == 'adafw':
                    start_adafw_time = time.time()
                    step_result = opt.adaptive_fw(
                        weights, [c['loc'] for c in comps],
                        [c['scale_diag'] for c in comps], qtx, mu_s, cov_s, s,
                        p, t, curvature_estimate)
                    end_adafw_time = time.time()
                    total_time += end_adafw_time - start_adafw_time
                    gamma = step_result['gamma']
                else:
                    raise NotImplementedError

                comps.append({'loc': mu_s, 'scale_diag': cov_s})
                weights = [(1. - gamma), gamma]

                c_global = estimate_global_curvature(comps, qtx)

                q_latest = Mixture(
                    cat=Categorical(probs=tf.convert_to_tensor(weights)),
                    components=[MultivariateNormalDiag(**c) for c in comps])

                # Log metrics for current iteration
                time_t = float(total_time)
                logger.info('total time %f' % (time_t))
                append_to_file(times_filename, time_t)

                elbo_t = elbo(q_latest, p, n_samples=1000)
                logger.info("iter, %d, elbo, %.2f +/- %.2f" %
                            (t, elbo_t[0], elbo_t[1]))
                append_to_file(elbos_filename,
                               "%f,%f" % (elbo_t[0], elbo_t[1]))

                logger.info('iter %d, gamma %.4f' % (t, gamma))
                append_to_file(step_filename, gamma)

                objective_t = kl_divergence(q_latest, p).eval()
                logger.info("run %d, kl %.4f" % (i, objective_t))
                append_to_file(objective_filename, objective_t)

                if FLAGS.fw_variant.startswith('ada'):
                    curvature_estimate = step_result['c_estimate']
                    append_to_file(gap_filename, step_result['gap'])
                    append_to_file(iter_info_filename,
                                   step_result['step_type'])
                    logger.info('gap = %.3f, ct = %.5f, iter_type = %s' %
                                (step_result['gap'], step_result['c_estimate'],
                                 step_result['step_type']))
                    append_to_file(curvature_filename,
                                   '%f,%f' % (curvature_estimate, c_global))
                elif FLAGS.fw_variant == 'line_search':
                    n_line_search_samples = step_result['n_samples']
                    grad_t = step_result['grad_gamma']
                    g_outfile = os.path.join(
                        goutdir, 'line_search_samples_%d.npy.%d' %
                        (n_line_search_samples, t))
                    logger.info('saving line search data to, %s' % g_outfile)
                    np.save(open(g_outfile, 'wb'), grad_t)

            sess.close()

        tf.reset_default_graph()
def adaptive_fw(weights,
                params,
                q_t,
                mu_s,
                cov_s,
                s_t,
                p,
                k,
                l_prev,
                gap=None):
    """Adaptive Frank-Wolfe algorithm.
    
    Sets step size as suggested in Algorithm 1 of
    https://arxiv.org/pdf/1806.05123.pdf

    Args:
        weights: [k], weights of the mixture components of q_t
        params: list containing dictionary of mixture params ('mu', 'scale')
        q_t: current mixture iterate q_t
        mu_s: [dim], mean for LMO solution s
        cov_s: [dim], cov matrix for LMO solution s
        s_t: Current atom & LMO Solution s
        p: edward.model, target distribution p
        k: iteration number of Frank-Wolfe
        l_prev: previous lipschitz estimate
        gap: Duality-Gap (if already computed)
    Returns:
        a dictionary containing gamma, new weights, new parameters
        lipschitz estimate, duality gap of current iterate
        and step information
    """

    # FIXME
    is_vector = FLAGS.base_dist in ['mvnormal', 'mvlaplace']

    d_t_norm = divergence(s_t, q_t, metric=FLAGS.distance_metric).eval()
    logger.info('\ndistance norm is %.3e' % d_t_norm)

    N_samples = FLAGS.n_monte_carlo_samples
    if gap is None:
        # create and sample from $s_t, q_t$
        sample_q = q_t.sample([N_samples])
        sample_s = s_t.sample([N_samples])
        step_s = tf.reduce_mean(grad_elbo(q_t, p, sample_s)).eval()
        step_q = tf.reduce_mean(grad_elbo(q_t, p, sample_q)).eval()
        gap = step_q - step_s
    logger.info('duality gap %.3e' % gap)
    if gap < 0:
        logger.warning("Duality gap is negative returning fixed step")
        return fixed(weights, params, q_t, mu_s, cov_s, s_t, p, k, gap)

    gamma = 2. / (k + 2.)
    tau = FLAGS.exp_adafw
    eta = FLAGS.damping_adafw
    # NOTE: this is from v1 of the paper, new version
    # replaces multiplicative eta with divisor eta
    pow_tau = 1.0
    i, l_t = 0, l_prev
    # Objective in this case is -ELBO
    f_t = -elbo(q_t, p, N_samples, return_std=False)
    debug('f(q_t) = %.3e' % (f_t))
    # return intial estimate if gap is -ve
    while gamma >= MIN_GAMMA and i < FLAGS.adafw_MAXITER:
        # compute $L_t$ and $\gamma_t$
        l_t = pow_tau * eta * l_prev
        gamma = min(gap / (l_t * d_t_norm), 1.0)
        d_1 = -gamma * gap
        d_2 = gamma * gamma * l_t * d_t_norm / 2.
        debug('linear d1 = %.3e, quad d2 = %.3e' % (d_1, d_2))
        quad_bound_rhs = f_t + d_1 + d_2

        # $w_{t + 1} = [(1 - \gamma)w_t, \gamma]$
        # Handling the case of gamma = 1.0
        # separately, weights might not get exactly 0 because
        # of precision issues. 0 wt components should be removed
        if gamma != 1.0:
            new_weights = copy.copy(weights)
            new_weights = [(1. - gamma) * w for w in new_weights]
            new_weights.append(gamma)
            new_params = copy.copy(params)
            new_params.append({'loc': mu_s, 'scale': cov_s})
            new_components = [
                coreutils.base_loc_scale(FLAGS.base_dist,
                                         c['loc'],
                                         c['scale'],
                                         multivariate=is_vector)
                for c in new_params
            ]
        else:
            new_weights = [1.]
            new_params = [{'loc': mu_s, 'scale': cov_s}]
            new_components = [s_t]

        qt_new = coreutils.get_mixture(new_weights, new_components)
        quad_bound_lhs = -elbo(qt_new, p, N_samples, return_std=False)
        logger.info('lt = %.3e, gamma = %.3f, f_(qt_new) = %.3e, '
                    'linear extrapolated = %.3e' %
                    (l_t, gamma, quad_bound_lhs, quad_bound_rhs))
        if quad_bound_lhs <= quad_bound_rhs:
            # Adaptive loop succeeded
            return {
                'gamma': gamma,
                'l_estimate': l_t,
                'weights': new_weights,
                'params': new_params,
                'gap': gap,
                'step_type': 'adaptive'
            }
        pow_tau *= tau
        i += 1

    # gamma below MIN_GAMMA
    logger.warning("gamma below threshold value, returning fixed step")
    return fixed(weights, params, q_t, mu_s, cov_s, s_t, p, k, gap)
def adaptive_afw(weights, params, q_t, mu_s, cov_s, s_t, p, k, l_prev):
    """Adaptive Away Steps algorithm.

    Args:
        weights: [k], weights of the mixture components of q_t
        params: list containing dictionary of mixture params ('mu', 'scale')
        q_t: current mixture iterate q_t
        mu_s: [dim], mean for LMO solution s
        cov_s: [dim], cov matrix for LMO solution s
        s_t: Current atom & LMO Solution s
        p: edward.model, target distribution p
        k: iteration number of Frank-Wolfe
        l_prev: previous lipschitz estimate
    Returns:
        a dictionary containing gamma, new weights, new parameters
        lipschitz estimate, duality gap of current iterate
        and step information
    """
    # FIXME
    is_vector = FLAGS.base_dist in ['mvnormal', 'mvlaplace']

    d_t_norm = divergence(s_t, q_t, metric=FLAGS.distance_metric).eval()
    logger.info('\ndistance norm is %.3e' % d_t_norm)

    # Find v_t
    qcomps = q_t.components
    index_v_t, step_v_t = argmax_grad_dotp(p, q_t, qcomps,
                                           FLAGS.n_monte_carlo_samples)
    v_t = qcomps[index_v_t]

    # Frank-Wolfe gap
    N_samples = FLAGS.n_monte_carlo_samples
    sample_q = q_t.sample([N_samples])
    sample_s = s_t.sample([N_samples])
    step_s = tf.reduce_mean(grad_elbo(q_t, p, sample_s)).eval()
    step_q = tf.reduce_mean(grad_elbo(q_t, p, sample_q)).eval()
    gap_fw = step_q - step_s
    if gap_fw < 0: logger.warning("Frank-Wolfe duality gap is negative")
    # Away gap
    gap_a = step_v_t - step_q
    if gap_a < 0: eprint('Away gap < 0!!!')
    logger.info('fw gap %.3e, away gap %.3e' % (gap_fw, gap_a))

    if (gap_fw >= gap_a) or (len(params) == 1):
        # FW direction, proceeds exactly as adafw
        logger.info('Proceeding in FW direction ')
        return adaptive_fw(weights, params, q_t, mu_s, cov_s, s_t, p, k,
                           l_prev, gap_fw)

    # Away direction
    logger.info('Proceeding in Away direction ')
    adaptive_step_type = 'away'
    gap = gap_a
    if weights[index_v_t] < 1.0:
        MAX_GAMMA = weights[index_v_t] / (1.0 - weights[index_v_t])
    else:
        MAX_GAMMA = 100.  # Large value when t = 1

    gamma = 2. / (k + 2.)
    tau = FLAGS.exp_adafw
    eta = FLAGS.damping_adafw
    pow_tau = 1.0
    i, l_t = 0, l_prev
    f_t = -elbo(q_t, p, N_samples, return_std=False)
    debug('f(q_t) = %.5f' % (f_t))
    is_drop_step = False
    while gamma >= MIN_GAMMA and i < FLAGS.adafw_MAXITER:
        # compute $L_t$ and $\gamma_t$
        l_t = pow_tau * eta * l_prev
        # NOTE: Handle extreme values of gamma carefully
        gamma = min(gap / (l_t * d_t_norm), MAX_GAMMA)

        d_1 = -gamma * gap
        d_2 = gamma * gamma * l_t * d_t_norm / 2.
        debug('linear d1 = %.5f, quad d2 = %.5f' % (d_1, d_2))
        quad_bound_rhs = f_t + d_1 + d_2

        # construct $q_{t + 1}$
        new_weights = copy.copy(weights)
        new_params = copy.copy(params)
        if gamma == MAX_GAMMA:
            # drop v_t
            is_drop_step = True
            del new_weights[index_v_t]
            new_weights = [(1. + gamma) * w for w in new_weights]
            del new_params[index_v_t]
        else:
            is_drop_step = False
            new_weights = [(1. + gamma) * w for w in new_weights]
            new_weights[index_v_t] -= gamma

        new_components = [
            coreutils.base_loc_scale(FLAGS.base_dist,
                                     c['loc'],
                                     c['scale'],
                                     multivariate=is_vector)
            for c in new_params
        ]

        qt_new = coreutils.get_mixture(new_weights, new_components)
        quad_bound_lhs = -elbo(qt_new, p, N_samples, return_std=False)
        logger.info('lt = %.3e, gamma = %.3f, f_(qt_new) = %.3e, '
                    'linear extrapolated = %.3e' %
                    (l_t, gamma, quad_bound_lhs, quad_bound_rhs))
        if quad_bound_lhs <= quad_bound_rhs:
            return {
                'gamma': gamma,
                'l_estimate': l_t,
                'weights': new_weights,
                'params': new_params,
                'gap': gap,
                'step_type': "drop" if is_drop_step else "away"
            }
        pow_tau *= tau
        i += 1

    # gamma below MIN_GAMMA
    logger.warning("gamma below threshold value, returning fixed step")
    return fixed(weights, params, q_t, mu_s, cov_s, s_t, p, k, gap)
def adaptive_pfw(weights, params, q_t, mu_s, cov_s, s_t, p, k, l_prev):
    """Adaptive pairwise variant.
    
    Args:
        weights: [k], weights of the mixture components of q_t
        params: list containing dictionary of mixture params ('mu', 'scale')
        q_t: current mixture iterate q_t
        mu_s: [dim], mean for LMO solution s
        cov_s: [dim], cov matrix for LMO solution s
        s_t: Current atom & LMO Solution s
        p: edward.model, target distribution p
        k: iteration number of Frank-Wolfe
        l_prev: previous lipschitz estimate
    Returns:
        a dictionary containing gamma, new weights, new parameters
        lipschitz estimate, duality gap of current iterate
        and step information
    """

    # FIXME
    is_vector = FLAGS.base_dist in ['mvnormal', 'mvlaplace']

    d_t_norm = divergence(s_t, q_t, metric=FLAGS.distance_metric).eval()
    logger.info('\ndistance norm is %.3e' % d_t_norm)

    # Find v_t
    qcomps = q_t.components
    index_v_t, step_v_t = argmax_grad_dotp(p, q_t, qcomps,
                                           FLAGS.n_monte_carlo_samples)
    v_t = qcomps[index_v_t]

    # Pairwise gap
    N_samples = FLAGS.n_monte_carlo_samples
    sample_s = s_t.sample([N_samples])
    step_s = tf.reduce_mean(grad_elbo(q_t, p, sample_s)).eval()
    gap_pw = step_v_t - step_s
    logger.info('Pairwise gap %.3e' % gap_pw)
    if gap_pw <= 0:
        logger.warning('Pairwise gap <= 0, returning fixed step')
        return fixed(weights, params, q_t, mu_s, cov_s, s_t, p, k, gap_pw)
    gap = gap_pw

    MAX_GAMMA = weights[index_v_t]

    gamma = 2. / (k + 2.)
    tau = FLAGS.exp_adafw
    eta = FLAGS.damping_adafw
    pow_tau = 1.0
    i, l_t = 0, l_prev
    f_t = -elbo(q_t, p, N_samples, return_std=False)
    debug('f(q_t) = %.3e' % f_t)
    is_drop_step = False
    while gamma >= MIN_GAMMA and i < FLAGS.adafw_MAXITER:
        # compute L_t and gamma_t
        l_t = pow_tau * eta * l_prev
        gamma = min(gap / (l_t * d_t_norm), MAX_GAMMA)

        d_1 = -gamma * gap
        d_2 = gamma * gamma * l_t * d_t_norm / 2.
        debug('linear d1 = %.5f, quad d2 = %.5f' % (d_1, d_2))
        quad_bound_rhs = f_t + d_1 + d_2

        # construct q_{t + 1}
        # handle the case of gamma = MAX_GAMMA separately
        new_weights = copy.copy(weights)
        new_weights.append(gamma)
        new_params = copy.copy(params)
        new_params.append({'loc': mu_s, 'scale': cov_s})
        if gamma != MAX_GAMMA:
            new_weights[index_v_t] -= gamma
            is_drop_step = False
        else:
            # hardcoding to 0
            del new_weights[index_v_t]
            del new_params[index_v_t]
            is_drop_step = True

        new_components = [
            coreutils.base_loc_scale(FLAGS.base_dist,
                                     c['loc'],
                                     c['scale'],
                                     multivariate=is_vector)
            for c in new_params
        ]

        qt_new = coreutils.get_mixture(new_weights, new_components)
        quad_bound_lhs = -elbo(qt_new, p, N_samples, return_std=False)
        logger.info('lt = %.3e, gamma = %.3f, f_(qt_new) = %.3e, '
                    'linear extrapolated = %.3e' %
                    (l_t, gamma, quad_bound_lhs, quad_bound_rhs))
        if quad_bound_lhs <= quad_bound_rhs:
            # Adaptive loop succeeded
            return {
                'gamma': gamma,
                'l_estimate': l_t,
                'weights': new_weights,
                'params': new_params,
                'gap': gap,
                'step_type': 'drop' if is_drop_step else 'adaptive'
            }
        pow_tau *= tau
        i += 1

    # gamma below MIN_GAMMA
    logger.warning("gamma below threshold value, returning fixed step")
    return fixed(weights, params, q_t, mu_s, cov_s, s_t, p, k, gap)
    def run(self, outdir, pi, mus, stds, n_features):
        """Run Boosted BBVI.

        Args:
            outdir: output directory
            pi: weights of target mixture
            mus: means of target mixture
            stds: scale of target mixture
            n_features: dimensionality

        Returns:
            runs FLAGS.n_fw_iter of frank-wolfe and logs
            relevant metrics
        """

        # comps: component atoms of boosting (contains a dict of params)
        # weights: weights given to every atom over comps
        # Together S = {weights, comps} make the active set
        weights, comps = [], []
        # L-continuous gradient estimate
        lipschitz_estimate = None

        #debug('target', mus, stds)
        start = 0
        if FLAGS.restore:
            # 1 correct LMO
            start = 1
            comps.append({'loc': mus[0], 'scale_diag': stds[0]})
            weights.append(1.0)
            lipschitz_estimate = opt.adafw_linit(None, None)


        # Metrics to log
        times_filename = os.path.join(outdir, 'times.csv')
        open(times_filename, 'w').close() # truncate the file if exists

        elbos_filename = os.path.join(outdir, 'elbos.csv')
        logger.info("saving elbos to, %s" % elbos_filename)
        open(elbos_filename, 'w').close()

        relbos_filename = os.path.join(outdir, 'relbos.csv')
        logger.info('saving relbos to, %s' % relbos_filename)
        open(relbos_filename, 'w').close()

        objective_filename = os.path.join(outdir, 'kl.csv')
        logger.info("saving kl divergence to, %s" % objective_filename)
        if not FLAGS.restore:
            open(objective_filename, 'w').close()

        step_filename = os.path.join(outdir, 'steps.csv')
        logger.info("saving gamma values to, %s" % step_filename)
        if not FLAGS.restore:
            open(step_filename, 'w').close()

        # 'adafw', 'ada_afw', 'ada_pfw'
        if FLAGS.fw_variant.startswith('ada'):
            lipschitz_filename = os.path.join(outdir, 'lipschitz.csv')
            open(lipschitz_filename, 'w').close()

            gap_filename = os.path.join(outdir, 'gap.csv')
            open(gap_filename, 'w').close()

            iter_info_filename = os.path.join(outdir, 'iter_info.txt')
            open(iter_info_filename, 'w').close()
        elif FLAGS.fw_variant == 'line_search':
            goutdir = os.path.join(outdir, 'gradients')
            os.makedirs(goutdir, exist_ok=True)

        for t in range(start, start + FLAGS.n_fw_iter):
            # NOTE: First iteration (t = 0) is initialization
            g = tf.Graph()
            with g.as_default():
                tf.set_random_seed(FLAGS.seed)
                sess = tf.InteractiveSession()
                with sess.as_default():
                    # build target distribution
                    p = self.target_dist(pi=pi, mus=mus, stds=stds)

                    if t == 0:
                        fw_iterates = {}
                    else:
                        # current iterate (solution until now)
                        qtx = Mixture(
                            cat=Categorical(
                                probs=tf.convert_to_tensor(weights)),
                            components=[
                                MultivariateNormalDiag(**c) for c in comps
                            ])
                        fw_iterates = {p: qtx}

                    # s is the solution to LMO. It is initialized randomly
                    #s = coreutils.construct_normal([n_features], t, 's')
                    s = coreutils.construct_multivariatenormaldiag([n_features], t, 's')

                    sess.run(tf.global_variables_initializer())

                    total_time = 0
                    start_inference_time = time.time()
                    # Run inference on relbo to solve LMO problem
                    # If initilization of mixture is random, then the
                    # first component will be random distribution, in
                    # that case no inference is needed.
                    # NOTE: KLqp has a side effect, it is modifying s
                    #if FLAGS.iter0 == 'vi' or t > 0:
                    if FLAGS.iter0 == 'vi':
                        inference = relbo.KLqp(
                            {
                                p: s
                            }, fw_iterates=fw_iterates, fw_iter=t)
                        inference.run(n_iter=FLAGS.LMO_iter)
                    # s now contains solution to LMO
                    end_inference_time = time.time()

                    mu_s = s.mean().eval()
                    cov_s = s.stddev().eval()
                    #debug('LMO', mu_s, cov_s)

                    # NOTE: keep only step size time
                    #total_time += end_inference_time - start_inference_time

                    # compute step size to update the next iterate
                    step_result = {}
                    if t == 0:
                        gamma = 1.
                        if FLAGS.fw_variant.startswith('ada'):
                            lipschitz_estimate = opt.adafw_linit(s, p)
                    elif FLAGS.fw_variant == 'fixed':
                        gamma = 2. / (t + 2.)
                    elif FLAGS.fw_variant == 'line_search':
                        start_line_search_time = time.time()
                        step_result = opt.line_search_dkl(
                            weights, [c['loc'] for c in comps],
                            [c['scale_diag'] for c in comps], qtx, mu_s, cov_s,
                            s, p, t)
                        end_line_search_time = time.time()
                        total_time += (
                            end_line_search_time - start_line_search_time)
                        gamma = step_result['gamma']
                    elif FLAGS.fw_variant == 'fc':
                        # Add a fixed component. Correct later
                        gamma = 2. / (t + 2.)
                    elif FLAGS.fw_variant == 'adafw':
                        start_adafw_time = time.time()
                        step_result = opt.adaptive_fw(
                            weights, [c['loc'] for c in comps],
                            [c['scale_diag'] for c in comps], qtx, mu_s, cov_s,
                            s, p, t, lipschitz_estimate)
                        end_adafw_time = time.time()
                        total_time += end_adafw_time - start_adafw_time
                        gamma = step_result['gamma']
                    elif FLAGS.fw_variant == 'ada_afw':
                        start_adaafw_time = time.time()
                        step_result = opt.adaptive_afw(
                            weights, comps, [c['loc'] for c in comps],
                            [c['scale_diag'] for c in comps], qtx, mu_s, cov_s,
                            s, p, t, lipschitz_estimate)
                        end_adaafw_time = time.time()
                        total_time += end_adaafw_time - start_adaafw_time
                        gamma = step_result['gamma'] # just for logging
                    elif FLAGS.fw_variant == 'ada_pfw':
                        start_adapfw_time = time.time()
                        step_result = opt.adaptive_pfw(
                            weights, comps, [c['loc'] for c in comps],
                            [c['scale_diag'] for c in comps], qtx, mu_s, cov_s,
                            s, p, t, lipschitz_estimate)
                        end_adapfw_time = time.time()
                        total_time += end_adapfw_time - start_adapfw_time
                        gamma = step_result['gamma'] # just for logging

                    if ((FLAGS.fw_variant == 'ada_afw'
                         or FLAGS.fw_variant == 'ada_pfw') and t > 0):
                        comps = step_result['comps']
                        weights = step_result['weights']
                    else:
                        comps.append({'loc': mu_s, 'scale_diag': cov_s})
                        weights = coreutils.update_weights(weights, gamma, t)

                    # TODO: Move this to fw_step_size.py
                    if FLAGS.fw_variant == "fc":
                        q_latest = Mixture(
                            cat=Categorical(
                                probs=tf.convert_to_tensor(weights)),
                            components=[
                                MultivariateNormalDiag(**c) for c in comps
                            ])
                        # Correction
                        start_fc_time = time.time()
                        weights = opt.fully_corrective(q_latest, p)
                        weights = list(weights)
                        for i in reversed(range(len(weights))):
                            # Remove components whose weight is 0
                            w = weights[i]
                            if w == 0:
                                del weights[i]
                                del comps[i]
                        weights = np.array(weights)
                        end_fc_time = time.time()
                        total_time += end_fc_time - start_fc_time

                    q_latest = Mixture(
                        cat=Categorical(probs=tf.convert_to_tensor(weights)),
                        components=[
                            MultivariateNormalDiag(**c) for c in comps
                        ])

                    # Log metrics for current iteration
                    time_t = float(total_time)
                    logger.info('total time %f' % (time_t))
                    append_to_file(times_filename, time_t)

                    elbo_t = elbo(q_latest, p, n_samples=10)
                    logger.info("iter, %d, elbo, %.2f +/- %.2f" %
                                (t, elbo_t[0], elbo_t[1]))
                    append_to_file(elbos_filename,
                                   "%f,%f" % (elbo_t[0], elbo_t[1]))

                    logger.info('iter %d, gamma %.4f' % (t, gamma))
                    append_to_file(step_filename, gamma)

                    if t > 0:
                        relbo_t = -coreutils.compute_relbo(
                            s, fw_iterates[p], p, np.log(t + 1))
                        append_to_file(relbos_filename, relbo_t)

                    objective_t = kl_divergence(q_latest, p).eval()
                    logger.info("iter, %d, kl, %.2f" % (t, objective_t))
                    append_to_file(objective_filename, objective_t)

                    if FLAGS.fw_variant.startswith('ada'):
                        if t > 0:
                            lipschitz_estimate = step_result['l_estimate']
                            append_to_file(gap_filename, step_result['gap'])
                            append_to_file(iter_info_filename,
                                        step_result['step_type'])
                            logger.info(
                                'gap = %.3f, lt = %.5f, iter_type = %s' %
                                (step_result['gap'], step_result['l_estimate'],
                                step_result['step_type']))
                        # l_estimate for iter 0 is the intial value
                        append_to_file(lipschitz_filename, lipschitz_estimate)
                    elif FLAGS.fw_variant == 'line_search' and t > 0:
                        n_line_search_samples = step_result['n_samples']
                        grad_t = step_result['grad_gamma']
                        g_outfile = os.path.join(
                            goutdir, 'line_search_samples_%d.npy.%d' %
                            (n_line_search_samples, t))
                        logger.info(
                            'saving line search data to, %s' % g_outfile)
                        np.save(open(g_outfile, 'wb'), grad_t)

                    for_serialization = {
                        'locs': np.array([c['loc'] for c in comps]),
                        'scale_diags':
                        np.array([c['scale_diag'] for c in comps])
                    }
                    qt_outfile = os.path.join(outdir, 'qt_iter%d.npz' % t)
                    np.savez(qt_outfile, weights=weights, **for_serialization)
                    np.savez(
                        os.path.join(outdir, 'qt_latest.npz'),
                        weights=weights,
                        **for_serialization)
                    logger.info("saving qt to, %s" % qt_outfile)
            tf.reset_default_graph()