def _get_model(n, fixed_noise=False, use_octf=False, **tkwargs): train_x1, train_y1 = _get_random_data(batch_shape=torch.Size(), m=1, n=10, **tkwargs) train_x2, train_y2 = _get_random_data(batch_shape=torch.Size(), m=1, n=11, **tkwargs) octfs = [Standardize(m=1), Standardize(m=1)] if use_octf else [None, None] if fixed_noise: train_y1_var = 0.1 + 0.1 * torch.rand_like(train_y1, **tkwargs) train_y2_var = 0.1 + 0.1 * torch.rand_like(train_y2, **tkwargs) model1 = FixedNoiseGP( train_X=train_x1, train_Y=train_y1, train_Yvar=train_y1_var, outcome_transform=octfs[0], ) model2 = FixedNoiseGP( train_X=train_x2, train_Y=train_y2, train_Yvar=train_y2_var, outcome_transform=octfs[1], ) else: model1 = SingleTaskGP(train_X=train_x1, train_Y=train_y1, outcome_transform=octfs[0]) model2 = SingleTaskGP(train_X=train_x2, train_Y=train_y2, outcome_transform=octfs[1]) model = ModelListGP(model1, model2) return model.to(**tkwargs)
def test_ModelListGP_single(self): tkwargs = {"device": self.device, "dtype": torch.float} train_x1, train_x2, train_y1, train_y2 = _get_random_data(n=10, **tkwargs) model1 = SingleTaskGP(train_X=train_x1, train_Y=train_y1) model = ModelListGP(model1) model.to(**tkwargs) test_x = torch.tensor([[0.25], [0.75]], **tkwargs) posterior = model.posterior(test_x) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultivariateNormal)
def initialize_model(train_x, train_obj, state_dict=None): # define models for objective model_obj = FixedNoiseGP(train_x, train_obj, train_yvar.expand_as(train_obj)).to(train_x) # combine into a multi-output GP model model = ModelListGP(model_obj) mll = SumMarginalLogLikelihood(model.likelihood, model) # load state dict if it is passed if state_dict is not None: model.load_state_dict(state_dict) return mll, model
def test_ModelListGPSingle(self, cuda=False): tkwargs = { "device": torch.device("cuda") if cuda else torch.device("cpu"), "dtype": torch.float, } train_x1, train_x2, train_y1, train_y2 = _get_random_data(n=10, **tkwargs) model1 = SingleTaskGP(train_X=train_x1, train_Y=train_y1) model = ModelListGP(gp_models=[model1]) model.to(**tkwargs) test_x = (torch.tensor([0.25, 0.75]).type_as(model.train_targets[0]),) posterior = model.posterior(test_x) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultivariateNormal)
def initialize_model(x, z, state_dict=None): n = z.shape[-1] gp_models = [] for i in range(n): y = z[..., i].unsqueeze(-1) gp_model = SingleTaskGP(train_X=x, train_Y=y) gp_model.likelihood.noise_covar.register_constraint( "raw_noise", GreaterThan(1e-5)) gp_models.append(gp_model) model_list = ModelListGP(*gp_models) mll = SumMarginalLogLikelihood(model_list.likelihood, model_list) if state_dict is not None: model_list.load_state_dict(state_dict) return mll, model_list
def _get_model(n, fixed_noise=False, **tkwargs): train_x1, train_x2, train_y1, train_y2 = _get_random_data(n=n, **tkwargs) if fixed_noise: train_y1_var = 0.1 + 0.1 * torch.rand_like(train_y1, **tkwargs) train_y2_var = 0.1 + 0.1 * torch.rand_like(train_y2, **tkwargs) model1 = FixedNoiseGP(train_X=train_x1, train_Y=train_y1, train_Yvar=train_y1_var) model2 = FixedNoiseGP(train_X=train_x2, train_Y=train_y2, train_Yvar=train_y2_var) else: model1 = SingleTaskGP(train_X=train_x1, train_Y=train_y1) model2 = SingleTaskGP(train_X=train_x2, train_Y=train_y2) model = ModelListGP(model1, model2) return model.to(**tkwargs)
def __init__(self, model_list: List[Model], iden: str, Nrestarts_eta_c: int, budget_failures: int) -> None: """ """ self.iden = iden self.my_print("Starting AcquisitionBaseTools ...") self.model_list = model_list # # Define GP posterior mean: # self.gp_mean_obj = GPmean(self.model_list[idxm['obj']]) # define models for objective and constraint # model_obj = FixedNoiseGP(train_x, train_obj, train_yvar.expand_as(train_obj)).to(train_x) # model_con = FixedNoiseGP(train_x, train_con, train_yvar.expand_as(train_con)).to(train_x) # combine into a multi-output GP model # mll = SumMarginalLogLikelihood(model.likelihood, model) # fit_gpytorch_model(mll) self.gp_mean_obj_cons = GPmeanConstrained(model=ModelListGP( model_list[0], model_list[1]), objective=constrained_obj) # Some options: self.Nrestarts_eta_c = Nrestarts_eta_c self.budget_failures = budget_failures self.dim = self.model_list[idxm['obj']].dim self.x_eta_c = None self.eta_c = None self.bounds = torch.tensor([[0.0] * self.dim, [1.0] * self.dim], device=device) # Optimization method: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html self.method_opti = "L-BFGS-B"
def test_get_extra_mll_args(self): train_X = torch.rand(3, 5) train_Y = torch.rand(3) model = SingleTaskGP(train_X=train_X, train_Y=train_Y) # test ExactMarginalLogLikelihood exact_mll = ExactMarginalLogLikelihood(model.likelihood, model) exact_extra_args = _get_extra_mll_args(mll=exact_mll) self.assertEqual(len(exact_extra_args), 1) self.assertTrue(torch.equal(exact_extra_args[0], train_X)) # test VariationalELBO elbo = VariationalELBO(model.likelihood, model, num_data=train_X.shape[0]) elbo_extra_args = _get_extra_mll_args(mll=elbo) self.assertEqual(len(elbo_extra_args), 0) # test SumMarginalLogLikelihood model2 = ModelListGP(gp_models=[model]) sum_mll = SumMarginalLogLikelihood(model2.likelihood, model2) sum_mll_extra_args = _get_extra_mll_args(mll=sum_mll) self.assertEqual(len(sum_mll_extra_args), 1) self.assertEqual(len(sum_mll_extra_args[0]), 1) self.assertTrue(torch.equal(sum_mll_extra_args[0][0], train_X)) # test unsupported MarginalLogLikelihood type unsupported_mll = MarginalLogLikelihood(model.likelihood, model) with self.assertRaises(ValueError): _get_extra_mll_args(mll=unsupported_mll)
def run(): train_x, train_obj, train_con, best_observed_value_nei = generate_initial_data(n=10) # define models for objective and constraint model_obj = FixedNoiseGP(train_x, train_obj, train_yvar.expand_as(train_obj)).to(train_x) model_con = FixedNoiseGP(train_x, train_con, train_yvar.expand_as(train_con)).to(train_x) # combine into a multi-output GP model model = ModelListGP(model_obj, model_con) mll = SumMarginalLogLikelihood(model.likelihood, model) fit_gpytorch_model(mll) acqui_gpmean_cons = GPmeanConstrained(model=model,objective=constrained_obj) # Forward: # X = torch.rand(size=(1,6)) # acqui_gpmean_cons.forward(X) method_opti = "SLSQP" # constraints # method_opti = "COBYLA" # constraints # method_opti = "L-BFGS-B" # Below, num_restarts must be equal to q, otherwise, it fails... options = {"batch_limit": 1,"maxiter": 200,"ftol":1e-6,"method":method_opti} x_eta_c, eta_c = optimize_acqf(acq_function=acqui_gpmean_cons,bounds=bounds,q=1,num_restarts=1, raw_samples=500,return_best_only=True,options=options) pdb.set_trace()
def test_is_noiseless(self): x = torch.zeros(1, 1) y = torch.zeros(1, 1) se = torch.zeros(1, 1) model = SingleTaskGP(x, y) self.assertTrue(is_noiseless(model)) model = HeteroskedasticSingleTaskGP(x, y, se) self.assertFalse(is_noiseless(model)) with self.assertRaises(ModelError): is_noiseless(ModelListGP())
def test_acquisition_functions(self): tkwargs = {"device": self.device, "dtype": torch.double} train_X, train_Y, train_Yvar, model = self._get_data_and_model( infer_noise=True, **tkwargs ) fit_fully_bayesian_model_nuts( model, warmup_steps=8, num_samples=5, thinning=2, disable_progbar=True ) sampler = IIDNormalSampler(num_samples=2) acquisition_functions = [ ExpectedImprovement(model=model, best_f=train_Y.max()), ProbabilityOfImprovement(model=model, best_f=train_Y.max()), PosteriorMean(model=model), UpperConfidenceBound(model=model, beta=4), qExpectedImprovement(model=model, best_f=train_Y.max(), sampler=sampler), qNoisyExpectedImprovement(model=model, X_baseline=train_X, sampler=sampler), qProbabilityOfImprovement( model=model, best_f=train_Y.max(), sampler=sampler ), qSimpleRegret(model=model, sampler=sampler), qUpperConfidenceBound(model=model, beta=4, sampler=sampler), qNoisyExpectedHypervolumeImprovement( model=ModelListGP(model, model), X_baseline=train_X, ref_point=torch.zeros(2, **tkwargs), sampler=sampler, ), qExpectedHypervolumeImprovement( model=ModelListGP(model, model), ref_point=torch.zeros(2, **tkwargs), sampler=sampler, partitioning=NondominatedPartitioning( ref_point=torch.zeros(2, **tkwargs), Y=train_Y.repeat([1, 2]) ), ), ] for acqf in acquisition_functions: for batch_shape in [[5], [6, 5, 2]]: test_X = torch.rand(*batch_shape, 1, 4, **tkwargs) self.assertEqual(acqf(test_X).shape, torch.Size(batch_shape))
def initialize_model(train_x, train_obj, train_con, state_dict=None): if problem.num_constraints == 1: # define models for objective and constraint # model_obj = SingleTaskGP(train_x, train_obj, outcome_transform=Standardize(m=train_obj.shape[-1])) # model_con = SingleTaskGP(train_x, train_con, outcome_transform=Standardize(m=train_con.shape[-1])) model_obj = SingleTaskGP(train_x, train_obj) model_con = SingleTaskGP(train_x, train_con) # combine into a multi-output GP model model = ModelListGP(model_obj, model_con) mll = SumMarginalLogLikelihood(model.likelihood, model) else: train_y = torch.cat([train_obj, train_con], dim=-1) model = SingleTaskGP( train_x, train_y, outcome_transform=Standardize(m=train_y.shape[-1])) mll = ExactMarginalLogLikelihood(model.likelihood, model) # load state dict if it is passed if state_dict is not None: model.load_state_dict(state_dict) return mll, model
def __init__(self, model_list: List[Model], options: dict) -> None: # AnalyticAcquisitionFunction.__init__(self, model=ModelListGP(model_list[0],model_list[1]), objective=ScalarizedObjective(weights=torch.Tensor([1.0]))) MCAcquisitionFunction.__init__(self, model=ModelListGP( model_list[0], model_list[1]), objective=constrained_obj) AcquisitionBaseToolsConstrained.__init__( self, model_list=model_list, iden="XsearchFailures", Nrestarts_eta_c=options["Nrestarts_eta_c"], budget_failures=options["budget_failures"]) self.dim = model_list[0].dim self.u_vec = None self.Nsamples_fmin = options["Nsamples_fmin"] self.Nrestarts_safe = options["Nrestarts_safe"] assert self.Nrestarts_safe > 1, "Choose at least 2 restart points." self.Nrestarts_risky = options["Nrestarts_risky"] assert self.Nrestarts_risky > 1, "Choose at least 2 restart points." self.which_mode = "risky" self.NBOiters = options["NBOiters"] self.rho_conserv = options["rho_safe"] self.method_safe = options["method_safe"] self.method_risky = options["method_risky"] self.constrained_opt = ConstrainedOptimizationNonLinearConstraints( self.dim, self.forward, self.probabilistic_constraint) self.use_nlopt = False self.disp_info_scipy_opti = options["disp_info_scipy_opti"] self.decision_boundary = options["decision_boundary"] # Initialize rho latent process: if float(self.budget_failures) / self.NBOiters == 1.0: self.zk = norm.ppf(self.rho_conserv) else: self.zk = norm.ppf(float(self.budget_failures) / self.NBOiters) self.zrisk = norm.ppf(1.0 - self.rho_conserv) self.zsafe = norm.ppf(self.rho_conserv)
def test_EIC(cfg: DictConfig): train_x, train_yl = get_initial_evaluations(dim=1) Neval = train_x.shape[0] dim = train_x.shape[1] gpcr1 = GPCRmodel(train_x=train_x, train_yl=train_yl, options=cfg.gpcr_model) gpcr2 = GPCRmodel(train_x=train_x.clone(), train_yl=train_yl.clone(), options=cfg.gpcr_model) model_list = ModelListGP(gpcr1,gpcr2) constraints = {1: (None, gpcr2.threshold )} # EIC = ConstrainedExpectedImprovement(model=model_list, best_f=0.2, objective_index=0, constraints=constraints) eic = ExpectedImprovementWithConstraints(model_list=model_list, constraints=constraints, options=cfg.acquisition_function) eic_val = eic(torch.tensor([[0.5]])) x_next, alpha_next = eic.get_next_point() # Plotting: axes_GPobj, axes_acqui, axes_fmin = plotting_tool_uncons(gpcr1,eic,axes_GPobj=None,axes_acqui=None,axes_fmin=None) axes_GPobj, axes_acqui, axes_fmin = plotting_tool_uncons(gpcr1,eic,axes_GPobj,axes_acqui,axes_fmin,xnext=x_next,alpha_next=alpha_next,block=True)
def test_get_extra_mll_args(self): train_X = torch.rand(3, 5) train_Y = torch.rand(3, 1) model = SingleTaskGP(train_X=train_X, train_Y=train_Y) # test ExactMarginalLogLikelihood exact_mll = ExactMarginalLogLikelihood(model.likelihood, model) exact_extra_args = _get_extra_mll_args(mll=exact_mll) self.assertEqual(len(exact_extra_args), 1) self.assertTrue(torch.equal(exact_extra_args[0], train_X)) # test SumMarginalLogLikelihood model2 = ModelListGP(model) sum_mll = SumMarginalLogLikelihood(model2.likelihood, model2) sum_mll_extra_args = _get_extra_mll_args(mll=sum_mll) self.assertEqual(len(sum_mll_extra_args), 1) self.assertEqual(len(sum_mll_extra_args[0]), 1) self.assertTrue(torch.equal(sum_mll_extra_args[0][0], train_X)) # test unsupported MarginalLogLikelihood type unsupported_mll = MarginalLogLikelihood(model.likelihood, model) unsupported_mll_extra_args = _get_extra_mll_args(mll=unsupported_mll) self.assertEqual(unsupported_mll_extra_args, [])
def _get_model(n, **tkwargs): train_x1, train_x2, train_y1, train_y2 = _get_random_data(n=n, **tkwargs) model1 = SingleTaskGP(train_X=train_x1, train_Y=train_y1) model2 = SingleTaskGP(train_X=train_x2, train_Y=train_y2) model = ModelListGP(gp_models=[model1, model2]) return model.to(**tkwargs)
def test_model_list_to_batched(self): for dtype in (torch.float, torch.double): # basic test train_X = torch.rand(10, 2, device=self.device, dtype=dtype) train_Y1 = train_X.sum(dim=-1, keepdim=True) train_Y2 = (train_X[:, 0] - train_X[:, 1]).unsqueeze(-1) gp1 = SingleTaskGP(train_X, train_Y1) gp2 = SingleTaskGP(train_X, train_Y2) list_gp = ModelListGP(gp1, gp2) batch_gp = model_list_to_batched(list_gp) self.assertIsInstance(batch_gp, SingleTaskGP) # test degenerate (single model) batch_gp = model_list_to_batched(ModelListGP(gp1)) self.assertEqual(batch_gp._num_outputs, 1) # test different model classes gp2 = FixedNoiseGP(train_X, train_Y1, torch.ones_like(train_Y1)) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # test non-batched models gp1_ = SimpleGPyTorchModel(train_X, train_Y1) gp2_ = SimpleGPyTorchModel(train_X, train_Y2) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1_, gp2_)) # test list of multi-output models train_Y = torch.cat([train_Y1, train_Y2], dim=-1) gp2 = SingleTaskGP(train_X, train_Y) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # test different training inputs gp2 = SingleTaskGP(2 * train_X, train_Y2) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # check scalar agreement gp2 = SingleTaskGP(train_X, train_Y2) gp2.likelihood.noise_covar.noise_prior.rate.fill_(1.0) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # check tensor shape agreement gp2 = SingleTaskGP(train_X, train_Y2) gp2.covar_module.raw_outputscale = torch.nn.Parameter( torch.tensor([0.0], device=self.device, dtype=dtype)) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # test HeteroskedasticSingleTaskGP gp2 = HeteroskedasticSingleTaskGP(train_X, train_Y1, torch.ones_like(train_Y1)) with self.assertRaises(NotImplementedError): model_list_to_batched(ModelListGP(gp2)) # test custom likelihood gp2 = SingleTaskGP(train_X, train_Y2, likelihood=GaussianLikelihood()) with self.assertRaises(NotImplementedError): model_list_to_batched(ModelListGP(gp2)) # test FixedNoiseGP train_X = torch.rand(10, 2, device=self.device, dtype=dtype) train_Y1 = train_X.sum(dim=-1, keepdim=True) train_Y2 = (train_X[:, 0] - train_X[:, 1]).unsqueeze(-1) gp1_ = FixedNoiseGP(train_X, train_Y1, torch.rand_like(train_Y1)) gp2_ = FixedNoiseGP(train_X, train_Y2, torch.rand_like(train_Y2)) list_gp = ModelListGP(gp1_, gp2_) batch_gp = model_list_to_batched(list_gp) # test SingleTaskMultiFidelityGP gp1_ = SingleTaskMultiFidelityGP(train_X, train_Y1, iteration_fidelity=1) gp2_ = SingleTaskMultiFidelityGP(train_X, train_Y2, iteration_fidelity=1) list_gp = ModelListGP(gp1_, gp2_) batch_gp = model_list_to_batched(list_gp) gp2_ = SingleTaskMultiFidelityGP(train_X, train_Y2, iteration_fidelity=2) list_gp = ModelListGP(gp1_, gp2_) with self.assertRaises(UnsupportedError): model_list_to_batched(list_gp) # test input transform input_tf = Normalize( d=2, bounds=torch.tensor([[0.0, 0.0], [1.0, 1.0]], device=self.device, dtype=dtype), ) gp1_ = SingleTaskGP(train_X, train_Y1, input_transform=input_tf) gp2_ = SingleTaskGP(train_X, train_Y2, input_transform=input_tf) list_gp = ModelListGP(gp1_, gp2_) batch_gp = model_list_to_batched(list_gp) self.assertIsInstance(batch_gp.input_transform, Normalize) self.assertTrue( torch.equal(batch_gp.input_transform.bounds, input_tf.bounds)) # test different input transforms input_tf2 = Normalize( d=2, bounds=torch.tensor([[-1.0, -1.0], [1.0, 1.0]], device=self.device, dtype=dtype), ) gp1_ = SingleTaskGP(train_X, train_Y1, input_transform=input_tf) gp2_ = SingleTaskGP(train_X, train_Y2, input_transform=input_tf2) list_gp = ModelListGP(gp1_, gp2_) with self.assertRaises(UnsupportedError): model_list_to_batched(list_gp) # test batched input transform input_tf2 = Normalize( d=2, bounds=torch.tensor([[-1.0, -1.0], [1.0, 1.0]], device=self.device, dtype=dtype), batch_shape=torch.Size([3]), ) gp1_ = SingleTaskGP(train_X, train_Y1, input_transform=input_tf2) gp2_ = SingleTaskGP(train_X, train_Y2, input_transform=input_tf2) list_gp = ModelListGP(gp1_, gp2_) with self.assertRaises(UnsupportedError): model_list_to_batched(list_gp) # test outcome transform octf = Standardize(m=1) gp1_ = SingleTaskGP(train_X, train_Y1, outcome_transform=octf) gp2_ = SingleTaskGP(train_X, train_Y2, outcome_transform=octf) list_gp = ModelListGP(gp1_, gp2_) with self.assertRaises(UnsupportedError): model_list_to_batched(list_gp)
def main(cfg: DictConfig): dim = 1 train_x_obj, train_y_obj = get_init_evals_obj(eval_type=1) train_x_cons, train_yl_cons = get_init_evals_cons(eval_type=1) gp_obj = GPmodel(dim=dim, train_X=train_x_obj, train_Y=train_y_obj.view(-1), options=cfg.gpmodel) gp_cons = GPCRmodel(dim=dim, train_x=train_x_cons.clone(), train_yl=train_yl_cons.clone(), options=cfg.gpcr_model) gp_cons.covar_module.base_kernel.lengthscale = 0.15 constraints = {1: (None, gp_cons.threshold)} model_list = ModelListGP(gp_obj, gp_cons) eic = ExpectedImprovementWithConstraints(model_list=model_list, constraints=constraints, options=cfg.acquisition_function) # Get next point: x_next, alpha_next = eic.get_next_point() hdl_fig = plt.figure(figsize=(16, 10)) # hdl_fig.suptitle("Bayesian optimization with unknown constraint and threshold") grid_size = (3, 1) axes_GPobj = plt.subplot2grid(grid_size, (0, 0), rowspan=1, fig=hdl_fig) axes_GPcons = plt.subplot2grid(grid_size, (1, 0), rowspan=1, fig=hdl_fig) # axes_GPcons_prob = plt.subplot2grid(grid_size, (2,0), rowspan=1,fig=hdl_fig) axes_acqui = plt.subplot2grid(grid_size, (2, 0), rowspan=1, fig=hdl_fig) # Plotting: axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui = plotting_tool_cons( gp_obj, gp_cons, eic, axes_GPobj=axes_GPobj, axes_GPcons=axes_GPcons, axes_GPcons_prob=None, axes_acqui=axes_acqui, cfg_plot=cfg.plot, xnext=x_next, alpha_next=alpha_next, plot_eta_c=False) fontsize_labels = 35 axes_GPobj.set_xticklabels([]) axes_GPobj.set_yticks([], []) axes_GPobj.set_yticklabels([], []) axes_GPobj.set_yticks([0]) axes_GPobj.set_ylabel(r"$f(x)$", fontsize=fontsize_labels) axes_GPcons.set_yticks([], []) axes_GPcons.set_xticklabels([], []) axes_GPcons.set_yticks([0]) axes_GPcons.set_ylabel(r"$g(x)$", fontsize=fontsize_labels) axes_acqui.set_yticks([], []) axes_acqui.set_xticks([0.0, 0.5, 1.0]) axes_acqui.set_ylabel(r"$\alpha(x)$", fontsize=fontsize_labels) axes_acqui.set_xlabel(r"x", fontsize=fontsize_labels) plt.pause(0.5) logger.info("Saving plot to {0:s} ...".format(cfg.plot.path)) hdl_fig.tight_layout() plt.savefig(fname=cfg.plot.path, dpi=300, facecolor='w', edgecolor='w') # pdb.set_trace() # # General plotting settings: # fontsize = 25 # fontsize_labels = fontsize + 3 # from matplotlib import rc # import matplotlib.pyplot as plt # from matplotlib.ticker import FormatStrFormatter # rc('font', family='serif') # rc('font',**{'family':'serif','serif':['Computer Modern Roman'], 'size': fontsize}) # rc('text', usetex=True) # rc('legend',fontsize=fontsize_labels) # ylim = [-8,+8] # hdl_fig, axes_GPcons = plt.subplots(1,1,figsize=(6, 6)) # gp_cons.plot(title="",block=False,axes=axes_GPcons,plotting=True,legend=False,Ndiv=100,Nsamples=None,ylim=ylim,showtickslabels_x=False,ylabel=r"$g(x)$") # if "threshold" in dir(gp_cons): # axes_GPcons.plot([0,1],[gp_cons.threshold.item()]*2,linestyle="--",color="mediumpurple",linewidth=2.0,label="threshold") # axes_GPcons.set_xticks([]) # axes_GPcons.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui = plotting_tool_cons(gp_obj,gp_cons,eic,axes_GPobj,axes_GPcons, # axes_GPcons_prob,axes_acqui,cfg.plot, # xnext=x_next,alpha_next=alpha_next,Ndiv=100) # axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui = plotting_tool_cons(gp_obj,gp_cons,eic,axes_GPobj=None,axes_GPcons=None,axes_GPcons_prob=None,axes_acqui=None,cfg_plot=cfg.plot,Ndiv=201) # axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui = plotting_tool_cons(gp_obj,gp_cons,eic,axes_GPobj,axes_GPcons,axes_GPcons_prob,axes_acqui,cfg.plot,xnext=x_next,alpha_next=alpha_next) # Ndiv = 100 # xpred = torch.linspace(0,1,Ndiv)[:,None] # prob_vec = eic.get_probability_of_safe_evaluation(xpred) # axes_acqui.plot(xpred.cpu().detach().numpy(),prob_vec.cpu().detach().numpy()) # import matplotlib.pyplot as plt plt.show(block=True)
def test_get_X_baseline(self): tkwargs = {"device": self.device} for dtype in (torch.float, torch.double): tkwargs["dtype"] = dtype X_train = torch.rand(20, 2, **tkwargs) model = MockModel( MockPosterior(mean=(2 * X_train + 1).sum(dim=-1, keepdim=True))) # test NEI with X_baseline acqf = qNoisyExpectedImprovement(model, X_baseline=X_train[:2]) X = get_X_baseline(acq_function=acqf) self.assertTrue(torch.equal(X, acqf.X_baseline)) # test EI without X_baseline acqf = qExpectedImprovement(model, best_f=0.0) with warnings.catch_warnings( record=True) as w, settings.debug(True): X_rnd = get_X_baseline(acq_function=acqf, ) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, BotorchWarning)) self.assertIsNone(X_rnd) # set train inputs model.train_inputs = (X_train, ) X = get_X_baseline(acq_function=acqf, ) self.assertTrue(torch.equal(X, X_train)) # test that we fail back to train_inputs if X_baseline is an empty tensor acqf.register_buffer("X_baseline", X_train[:0]) X = get_X_baseline(acq_function=acqf, ) self.assertTrue(torch.equal(X, X_train)) # test acquisitipon function without X_baseline or model acqf = FixedFeatureAcquisitionFunction(acqf, d=2, columns=[0], values=[0]) with warnings.catch_warnings( record=True) as w, settings.debug(True): X_rnd = get_X_baseline(acq_function=acqf, ) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, BotorchWarning)) self.assertIsNone(X_rnd) Y_train = 2 * X_train[:2] + 1 moo_model = MockModel(MockPosterior(mean=Y_train, samples=Y_train)) ref_point = torch.zeros(2, **tkwargs) # test NEHVI with X_baseline acqf = qNoisyExpectedHypervolumeImprovement( moo_model, ref_point=ref_point, X_baseline=X_train[:2], cache_root=False, ) X = get_X_baseline(acq_function=acqf, ) self.assertTrue(torch.equal(X, acqf.X_baseline)) # test qEHVI without train_inputs acqf = qExpectedHypervolumeImprovement( moo_model, ref_point=ref_point, partitioning=FastNondominatedPartitioning( ref_point=ref_point, Y=Y_train, ), ) # test extracting train_inputs from model list GP model_list = ModelListGP( SingleTaskGP(X_train, Y_train[:, :1]), SingleTaskGP(X_train, Y_train[:, 1:]), ) acqf = qExpectedHypervolumeImprovement( model_list, ref_point=ref_point, partitioning=FastNondominatedPartitioning( ref_point=ref_point, Y=Y_train, ), ) X = get_X_baseline(acq_function=acqf, ) self.assertTrue(torch.equal(X, X_train)) # test MESMO for which we need to use # `acqf.mo_model` batched_mo_model = SingleTaskGP(X_train, Y_train) acqf = qMultiObjectiveMaxValueEntropy( batched_mo_model, sample_pareto_frontiers=lambda model: torch.rand( 10, 2, **tkwargs), ) X = get_X_baseline(acq_function=acqf, ) self.assertTrue(torch.equal(X, X_train)) # test that if there is an input transform that is applied # to the train_inputs when the model is in eval mode, we # extract the untransformed train_inputs model = SingleTaskGP(X_train, Y_train[:, :1], input_transform=Warp(indices=[0, 1])) model.eval() self.assertFalse(torch.equal(model.train_inputs[0], X_train)) acqf = qExpectedImprovement(model, best_f=0.0) X = get_X_baseline(acq_function=acqf, ) self.assertTrue(torch.equal(X, X_train))
def test_model_list_to_batched(self): for dtype in (torch.float, torch.double): # basic test train_X = torch.rand(10, 2, device=self.device, dtype=dtype) train_Y1 = train_X.sum(dim=-1, keepdim=True) train_Y2 = (train_X[:, 0] - train_X[:, 1]).unsqueeze(-1) gp1 = SingleTaskGP(train_X, train_Y1) gp2 = SingleTaskGP(train_X, train_Y2) list_gp = ModelListGP(gp1, gp2) batch_gp = model_list_to_batched(list_gp) self.assertIsInstance(batch_gp, SingleTaskGP) # test degenerate (single model) batch_gp = model_list_to_batched(ModelListGP(gp1)) self.assertEqual(batch_gp._num_outputs, 1) # test different model classes gp2 = FixedNoiseGP(train_X, train_Y1, torch.ones_like(train_Y1)) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # test non-batched models gp1_ = SimpleGPyTorchModel(train_X, train_Y1) gp2_ = SimpleGPyTorchModel(train_X, train_Y2) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1_, gp2_)) # test list of multi-output models train_Y = torch.cat([train_Y1, train_Y2], dim=-1) gp2 = SingleTaskGP(train_X, train_Y) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # test different training inputs gp2 = SingleTaskGP(2 * train_X, train_Y2) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # check scalar agreement gp2 = SingleTaskGP(train_X, train_Y2) gp2.likelihood.noise_covar.noise_prior.rate.fill_(1.0) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # check tensor shape agreement gp2 = SingleTaskGP(train_X, train_Y2) gp2.covar_module.raw_outputscale = torch.nn.Parameter( torch.tensor([0.0], device=self.device, dtype=dtype) ) with self.assertRaises(UnsupportedError): model_list_to_batched(ModelListGP(gp1, gp2)) # test HeteroskedasticSingleTaskGP gp2 = HeteroskedasticSingleTaskGP( train_X, train_Y1, torch.ones_like(train_Y1) ) with self.assertRaises(NotImplementedError): model_list_to_batched(ModelListGP(gp2)) # test custom likelihood gp2 = SingleTaskGP(train_X, train_Y2, likelihood=GaussianLikelihood()) with self.assertRaises(NotImplementedError): model_list_to_batched(ModelListGP(gp2)) # test FixedNoiseGP train_X = torch.rand(10, 2, device=self.device, dtype=dtype) train_Y1 = train_X.sum(dim=-1, keepdim=True) train_Y2 = (train_X[:, 0] - train_X[:, 1]).unsqueeze(-1) gp1_ = FixedNoiseGP(train_X, train_Y1, torch.rand_like(train_Y1)) gp2_ = FixedNoiseGP(train_X, train_Y2, torch.rand_like(train_Y2)) list_gp = ModelListGP(gp1_, gp2_) batch_gp = model_list_to_batched(list_gp)
def run(cfg: DictConfig, rep_nr: int) -> None: # Random seed for numpy and torch: np.random.seed(rep_nr) torch.manual_seed(rep_nr) # Load true function and initial evaluations: function_obj, function_cons, dim, x_min, f_min = get_objective_functions( which_objective=cfg.which_objective) logvars = initialize_logging_variables() if "safety_mechanisms" in cfg.keys(): if cfg.safety_mechanisms.use and cfg.safety_mechanisms.load_from_file.use: nr_exp = cfg.safety_mechanisms.load_from_file.nr_exp path2data = "./{0:s}/{1:s}_results/{2:s}".format( cfg.which_objective, cfg.acqui, nr_exp) try: with open("{0:s}/data_0.yaml".format(path2data), "r") as stream: my_node = yaml.load(stream, Loader=yaml.UnsafeLoader) except Exception as inst: logger.info("Exception (!) type: {0:s} | args: {1:s}".format( str(type(inst)), str(inst.args))) raise ValueError("Data corrupted or non-existent!!!") else: logger.info("We have lodaded existing data from {0:s}".format( path2data)) logger.info( "A quick inspection reveals {0:d} existing datapoint(s) ..." .format(len(my_node["regret_simple_array"]))) if cfg.safety_mechanisms.load_from_file.modify: logger.info( "Here, we have the opportunity of modifying some data, if needed..." ) pdb.set_trace() # pdb.set_trace() # Get stored values: if my_node["GPs"][0]["train_inputs"] is not None: train_x_obj = torch.from_numpy( my_node["GPs"][0]["train_inputs"]).to(device=device, dtype=dtype) else: train_x_obj = [torch.tensor([])] if my_node["GPs"][0]["train_targets"] is not None: train_y_obj = torch.from_numpy( my_node["GPs"][0]["train_targets"]).to(device=device, dtype=dtype) else: train_y_obj = torch.tensor([]) train_x_cons = torch.from_numpy( my_node["GPs"][1]["train_inputs"]).to(device=device, dtype=dtype) train_yl_cons = torch.from_numpy( my_node["GPs"][1]["train_targets"]).to(device=device, dtype=dtype) logger.info("train_x_cons:" + str(train_x_cons)) logger.info("train_x_cons.shape:" + str(train_x_cons.shape)) # # If we need to convert something, do it here: # train_x_obj[:,2:4] = train_x_obj[:,2:4]*(0.08-0.03)/(0.14-0.03) # train_x_cons[:,2:4] = train_x_cons[:,2:4]*(0.08-0.03)/(0.14-0.03) # # Mods 27 Jul 12:43: # train_x_obj = train_x_obj[0:-1,:] # kick out last value from f(x) # train_y_obj = train_y_obj[0:-1] # kick out last value from f(x) # # train_x_cons # stays the same g(x) # train_yl_cons[-1,0] = float("Inf") # Make the last point of g(x) a failure # train_yl_cons[-1,1] = -1.0 # Make the last point of g(x) a failure # # Mods 29 Jul 12:43: train_x_obj[:, 0:2] = train_x_obj[:, 0:2] * (4.0 - 1.5) / (5.0 - 1.5) train_x_cons[:, 0:2] = train_x_cons[:, 0:2] * (4.0 - 1.5) / (5.0 - 1.5) logger.info("after conversion....") logger.info("train_x_cons:" + str(train_x_cons)) logger.info("train_x_cons.shape:" + str(train_x_cons.shape)) # Get best: ind_min_cost = torch.argmin(train_y_obj) train_x_obj_min = train_x_obj[ind_min_cost, :] print("train_x_obj_min:", train_x_obj_min) print("train_y_obj_min:", train_y_obj[ind_min_cost]) # pdb.set_trace() # Get logvars so far: logvars["regret_simple_list"] = np.ndarray.tolist( my_node["regret_simple_array"]) logvars["regret_simple_list"] = [ np.array([el]) for el in logvars["regret_simple_list"] ] logvars["threshold_list"] = np.ndarray.tolist( my_node["threshold_array"]) logvars["threshold_list"] = [ np.array([el]) for el in logvars["threshold_list"] ] logvars["x_next_list"] = np.ndarray.tolist(my_node["x_next_array"]) logvars["x_next_list"] = [ np.array(el) for el in logvars["x_next_list"] ] # Report of data so far: logger.info("Quick report on data collected so far") logger.info("=====================================") logger.info("regret_simple_list:" + str(logvars["regret_simple_list"])) logger.info("threshold_list:" + str(logvars["threshold_list"])) train_y_obj_mod = train_yl_cons[:, 0] train_y_obj_mod[train_y_obj_mod != float("Inf")] = train_y_obj[:] # pdb.set_trace() elif cfg.safety_mechanisms.use: my_path = "./{0:s}/{1:s}_results".format(cfg.which_objective, cfg.acqui) path2data = generate_folder_at_path(my_path, create_folder=True) train_x_obj, train_y_obj, train_x_cons, train_yl_cons = get_initial_evaluations( which_objective=cfg.which_objective, function_obj=function_obj, function_cons=function_cons, cfg_Ninit_points=cfg.Ninit_points, with_noise=cfg.with_noise) # pdb.set_trace() gp_obj = GPmodel(dim=dim, train_X=train_x_obj, train_Y=train_y_obj.view(-1), options=cfg.gpmodel) if cfg.acqui == "EIC": gp_cons = GPCRmodel(dim=dim, train_x=train_x_cons.clone(), train_yl=train_yl_cons.clone(), options=cfg.gpcr_model) elif cfg.acqui == "EIClassi": ind_safe = train_yl_cons[:, 1] == +1 train_yl_cons[ind_safe, 1] = +1 train_yl_cons[~ind_safe, 1] = 0 gp_cons = GPClassifier(dim=dim, train_X=train_x_cons.clone(), train_Y=train_yl_cons[:, 1].clone(), options=cfg.gpclassimodel) if cfg.acqui == "EIC": constraints = {1: (None, gp_cons.threshold)} model_list = ModelListGP(gp_obj, gp_cons) eic = ExpectedImprovementWithConstraints( model_list=model_list, constraints=constraints, options=cfg.acquisition_function) elif cfg.acqui == "EIClassi": model_list = [gp_obj, gp_cons] eic = ExpectedImprovementWithConstraintsClassi( dim=dim, model_list=model_list, options=cfg.acquisition_function) # pdb.set_trace() if cfg.acqui == "EIC" and model_list.train_targets[0] is not None: logvars["GPs"] = dict(train_inputs=[ train_inp[0] for train_inp in model_list.train_inputs ], train_targets=[ train_tar for train_tar in model_list.train_targets ]) elif cfg.acqui == "EIClassi" and model_list[0].train_targets is not None: logvars["GPs"] = dict(train_inputs=[ mod.train_inputs[0] if mod.train_inputs[0] is not None else None for mod in model_list ], train_targets=[ mod.train_targets for mod in model_list ]) # pdb.set_trace() # Plotting: if cfg.plot.plotting: axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui = plotting_tool_cons( gp_obj, gp_cons, eic, axes_GPobj=None, axes_GPcons=None, axes_GPcons_prob=None, axes_acqui=None, cfg_plot=cfg.plot) try: # average over multiple trials for trial in range(cfg.NBOiters): msg_bo_iters = " <<< BOC Iteration {0:d} / {1:d} >>>".format( trial + 1, cfg.NBOiters) print("\n\n") logger.info("=" * len(msg_bo_iters)) logger.info("{0:s}".format(msg_bo_iters)) logger.info("=" * len(msg_bo_iters)) # Get next point: x_next, alpha_next = eic.get_next_point() # Compute simple regret: regret_simple = eic.get_simple_regret_cons(fmin_true=f_min) logger.info("Regret: {0:2.5f}".format(regret_simple.item())) if x_next is None and alpha_next is None: break if cfg.plot.plotting: axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui = plotting_tool_cons( gp_obj, gp_cons, eic, axes_GPobj, axes_GPcons, axes_GPcons_prob, axes_acqui, cfg.plot, xnext=x_next, alpha_next=alpha_next) # Logging: append_logging_variables(logvars, eic.eta_c, eic.x_eta_c, x_next, alpha_next, regret_simple, gp_cons.threshold) # pdb.set_trace() # Collect evaluation at xnext: y_new_obj = function_obj(x_next, with_noise=cfg.with_noise) # yl_new_cons = function_cons(x_next,with_noise=cfg.with_noise) yl_new_cons = function_cons(x_next, with_noise=False) x_new_cons = x_next x_new_obj = x_new_cons[yl_new_cons[:, 1] == +1.0, :] y_new_obj = y_new_obj[yl_new_cons[:, 1] == +1.0] # Update GP model: if len(y_new_obj) == 0: # If there's no new data if gp_obj.train_inputs is None and gp_obj.train_targets is None: # and the GPobj was empty, fill with empty tensors train_x_obj_new = [torch.tensor([])] train_y_obj_new = torch.tensor([]) else: # and the GPobj wasn't empty, don't update it train_x_obj_new = gp_obj.train_inputs[0] train_y_obj_new = gp_obj.train_targets else: # if there's new data if gp_obj.train_inputs is None and gp_obj.train_targets is None: # and the GPobj was empty, fill it train_x_obj_new = x_new_obj train_y_obj_new = y_new_obj else: # and the GPobj wasn't empty, concatenate train_x_obj_new = torch.cat( [gp_obj.train_inputs[0], x_new_obj]) train_y_obj_new = torch.cat( [gp_obj.train_targets, y_new_obj]) # pdb.set_trace() train_x_cons_new = torch.cat([gp_cons.train_x, x_new_cons]) train_yl_cons_new = torch.cat( [gp_cons.train_yl, yl_new_cons.view(1, 2)], dim=0) # Load GP model for f(x) and fit hyperparameters: gp_obj = GPmodel(dim=dim, train_X=train_x_obj_new, train_Y=train_y_obj_new.view(-1), options=cfg.gpmodel) # Load GPCR model for g(x) and fit hyperparameters: gp_cons_train_x_backup = gp_cons.train_x.clone() gp_cons_train_yl_backup = gp_cons.train_yl.clone() if cfg.acqui == "EIClassi": ind_safe = train_yl_cons_new[:, 1] == +1 train_yl_cons_new[ind_safe, 1] = +1 train_yl_cons_new[~ind_safe, 1] = 0 gp_cons = GPClassifier(dim=dim, train_X=train_x_cons_new.clone(), train_Y=train_yl_cons_new[:, 1].clone(), options=cfg.gpclassimodel) elif cfg.acqui == "EIC": try: gp_cons = GPCRmodel(dim=dim, train_x=train_x_cons_new.clone(), train_yl=train_yl_cons_new.clone(), options=cfg.gpcr_model) except Exception as inst: logger.info( " Exception (!) type: {0:s} | args: {1:s}".format( str(type(inst)), str(inst.args))) logger.info( " GPCR model has failed to be constructed (!!)") logger.info( " This typically happens when the model the model is stuffed with datapoints, some of them rather close together," ) logger.info( " which causes numerical unstability that couldn't be fixed internally ..." ) logger.info( " Trying to simply not update the GPCR model. Keeping the same number of evaluations: {0:d} ..." .format(gp_cons_train_x_backup.shape[0])) # gp_cons = GPCRmodel(dim=dim, train_x=gp_cons_train_x_backup, train_yl=gp_cons_train_yl_backup, options=cfg.gpcr_model) # Not needed! We keep the old one # Update the model in other classes: if cfg.acqui == "EIC": constraints = {1: (None, gp_cons.threshold)} model_list = ModelListGP(gp_obj, gp_cons) eic = ExpectedImprovementWithConstraints( model_list=model_list, constraints=constraints, options=cfg.acquisition_function) elif cfg.acqui == "EIClassi": model_list = [gp_obj, gp_cons] eic = ExpectedImprovementWithConstraintsClassi( dim=dim, model_list=model_list, options=cfg.acquisition_function) logvars["GPs"] = [gp_obj.logging(), gp_cons.logging()] if "safety_mechanisms" in cfg.keys(): if cfg.safety_mechanisms.use: node2write = convert_lists2arrays(logvars) node2write["n_rep"] = rep_nr node2write["ycm"] = f_min node2write["xcm"] = x_min # node2write["cfg"] = cfg # Do NOT save this, or yaml will terribly fail as it will have a cyclic graph! file2save = "{0:s}/data_0.yaml".format(path2data) logger.info( "Saving while optimizing. Iteration: {0:d} / {1:d}". format(trial + 1, cfg.NBOiters)) logger.info("Saving in {0:s} ...".format(file2save)) with open(file2save, "w") as stream_write: yaml.dump(node2write, stream_write) logger.info("Done!") except Exception as inst: logger.info("Exception (!) type: {0:s} | args: {1:s}".format( str(type(inst)), str(inst.args))) msg_bo_final = " <<< {0:s} failed (!) at iteration {1:d} / {2:d} >>>".format( cfg.acqui, trial + 1, cfg.NBOiters) else: msg_bo_final = " <<< {0:s} finished successfully!! >>>".format( cfg.acqui) logger.info("=" * len(msg_bo_final)) logger.info("{0:s}".format(msg_bo_final)) logger.info("=" * len(msg_bo_final)) node2write = convert_lists2arrays(logvars) node2write["n_rep"] = rep_nr node2write["ycm"] = f_min node2write["xcm"] = x_min # node2write["cfg"] = cfg # Do NOT save this, or yaml will terribly fail as it will have a cyclic graph! if "safety_mechanisms" in cfg.keys( ) and cfg.safety_mechanisms.use == False: save_data(node2write=node2write, which_obj=cfg.which_objective, which_acqui=cfg.acqui, rep_nr=rep_nr)