def run(self): while not self.kill_received: # get a task try: job = self.work_queue.get_nowait() except Queue.Empty: break start_time = time.time() print("Creating a Scene") boxm_batch.init_process("boxmCreateSceneProcess") boxm_batch.set_input_string(0, job.input_scene_path) boxm_batch.run_process() (scene_id, scene_type) = boxm_batch.commit_output(0) scene = dbvalue(scene_id, scene_type) print("Save Scene") boxm_batch.init_process("boxmSaveOccupancyRawProcess") boxm_batch.set_input_from_db(0, scene) boxm_batch.set_input_string(1, job.output_scene_path) boxm_batch.set_input_unsigned(2, 0) boxm_batch.set_input_unsigned(3, 1) boxm_batch.run_process() print("Runing time for worker:", self.name) print(time.time() - start_time)
def run(self): while not self.kill_received: # get a task try: job = self.work_queue.get_nowait() except Queue.Empty: break start_time = time.time(); model_dir=job.model_dir; model_name =job.model_name; grey_offset = job.grey_offset; print("Model dir:") print model_dir print("Model Name:") print model_name print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir + "/" + model_name + ".xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene= dbvalue(scene_id, scene_type); print("Splitting the scene"); boxm_batch.init_process("boxmSplitSceneProcess"); boxm_batch.set_input_from_db(0, scene); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); apm_scene = dbvalue(scene_id, scene_type); (scene_id, scene_type) = boxm_batch.commit_output(1); alpha_scene = dbvalue(scene_id, scene_type); print("Save Scene"); boxm_batch.init_process("boxmSaveScene RawProcess"); boxm_batch.set_input_from_db(0,alpha_scene); boxm_batch.set_input_string(1,model_dir + "/drishti/alpha_scene"); boxm_batch.set_input_unsigned(2,0); boxm_batch.set_input_unsigned(3,1); boxm_batch.run_process(); #free memory boxm_batch.clear(); print ("Runing time for worker:", self.name) print(time.time() - start_time); #output exit code in this case #important: having a result queue makes the execute_jobs wait for all jobs in the queue before exiting self.result_queue.put(0);
def run(self): while not self.kill_received: # get a task try: job = self.work_queue.get_nowait() except Queue.Empty: break start_time = time.time(); model_dir=job.model_dir; ply_file =job.ply_file; grey_offset = job.grey_offset; boxm_batch.set_stdout('logs/log_' + str(os.getpid())+ ".txt"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/pmvs_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene= dbvalue(scene_id, scene_type); boxm_batch.init_process("boxm_create_scene_from_ply_process"); boxm_batch.set_input_string(0,ply_file); boxm_batch.set_input_from_db(1,scene); boxm_batch.set_input_float(2,grey_offset); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Save Scene"); boxm_batch.init_process("boxmSaveSceneRawProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_string(1,model_dir + "/drishti/ply_scene"); boxm_batch.set_input_unsigned(2,0); boxm_batch.set_input_unsigned(3,1); boxm_batch.run_process(); #free memory boxm_batch.reset_stdout(); boxm_batch.clear(); print ("Runing time for worker:", self.name) print(time.time() - start_time); #output exit code in this case #important: having a result queue makes the execute_jobs wait for all jobs in the queue before exiting self.result_queue.put(0);
import boxm_batch; boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string print("Loading Scene"); boxm_batch.init_process("boxmLoadSceneProcess"); boxm_batch.set_input_string(0,"D:\\vj\\data\\CapitolSiteHigh\\boxm\\scene.xml"); boxm_batch.set_input_string(1,"apm_mog_grey"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,"camera_00116.txt"); boxm_batch.run_process(); (cam_id,cam_type)=boxm_batch.commit_output(0); camera=dbvalue(cam_id, cam_type); print("Rendering Image"); boxm_batch.init_process("boxmRenderExpectedProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_from_db(1,camera); boxm_batch.set_input_unsigned(2,1280); boxm_batch.set_input_unsigned(3,720); boxm_batch.run_process();
around_imgs_dir = "/Users/isa/Experiments/DowntownBOXM_4_4_1/imgs360_refined" if not os.path.isdir( model_imgs_dir + "/"): os.mkdir( model_imgs_dir + "/"); image_fnames = "/Volumes/vision/video/dec/Downtown/video/frame_%05d.png"; camera_fnames = "/Volumes/vision/video/dec/Downtown/cameras_KRT/camera_%05d.txt"; expected_fname = model_imgs_dir + "/expected_%05d.tiff"; image_id_fname = model_imgs_dir + "/schedule_refined.txt"; expected_fname_no_dir = "/expected_%05d.tiff" print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/downtown_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Virtual Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % 40); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); vcam = dbvalue(id,type); import random; schedule = [i for i in range(0,180,9)];
out_video_site_file = "kermit_video_site.xml" keys_available = 0 # if keys have already been extracted, just load them # after finding F between a pair, all matches that are off by 0.6% of # max(image_width, image_height) pixels are considered outliers outlier_threshold_percentage = 0.6 # for an image pair to be connected in the image connectivity graph min_number_of_matches = 16 imgs = [] sizes = [] for i in range(0, img_cnt, 1): print("Loading Image") boxm_batch.init_process("vilLoadImageViewProcess") boxm_batch.set_input_string(0, img_path + img_name % i) boxm_batch.run_process() (id, type) = boxm_batch.commit_output(0) image = dbvalue(id, type) imgs.append(image) boxm_batch.init_process("vilImageSizeProcess") boxm_batch.set_input_from_db(0, image) boxm_batch.run_process() (ni_id, type) = boxm_batch.commit_output(0) (nj_id, type) = boxm_batch.commit_output(1) ni = boxm_batch.get_input_unsigned(ni_id) nj = boxm_batch.get_input_unsigned(nj_id) if ni > nj: sizes.append(ni) else:
#model_dir = "/Users/isa/Experiments/CapitolBOXM_6_4_4"; model_dir = "/Users/isa/Experiments/DowntownBOXM_3_3_1"; output_dir = model_dir; #if not os.path.isdir( model_imgs_dir + "/"): # os.mkdir( model_imgs_dir + "/"); #camera_fname = "/Volumes/vision/video/dec/capitol_sfm_rotated/camera_top.txt"; camera_fname = "/Users/isa/Experiments/DowntownBOXM_3_3_1/camera_top.txt" #camera_fname = "/Volumes/vision/video/dec/capitol_sfm_rotated/cameras_KRT/camera_00075.txt"; expected_fname = output_dir + "/expected_top.tiff"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/downtown_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Top Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fname); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); top_cam = dbvalue(id,type); # Generate Expected Image print("Generating Expected Image"); boxm_batch.init_process("boxmRenderExpectedRTProcess");
model_dir = "/Users/isa/Experiments/CapitolBOXM_6_4_4"; model_imgs_dir = "/Users/isa/Experiments/CapitolBOXM_6_4_4/imgs" around_imgs_dir = "/Users/isa/Experiments/CapitolBOXM_6_4_4/imgs360_%03d" if not os.path.isdir( model_imgs_dir + "/"): os.mkdir( model_imgs_dir + "/"); image_fnames = "/Volumes/vision/video/dec/CapitolSiteHigh/video_grey/frame_%05d.png"; camera_fnames = "/Volumes/vision/video/dec/capitol_sfm_rotated/cameras_KRT/camera_%05d.txt"; expected_fname = model_imgs_dir + "/expected_%05d.tiff"; image_id_fname = model_imgs_dir + "/schedule2.txt"; expected_fname_no_dir = "/expected_%05d.tiff" print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/capitol_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Virtual Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % 40); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); vcam = dbvalue(id,type); nframes =255; #import random; #schedule = [i for i in range(0,nframes)];
import boxm_batch; boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string model_dir = "/Users/isa/Experiments/CapitolBOXM"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/alpha_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("*************************************"); #convert_alpha = 0; #flag to convert alpha to probability value # #print("Splitting the scene"); #boxm_batch.init_process("boxmSplitSceneProcess"); #boxm_batch.set_input_from_db(0, scene); #boxm_batch.set_input_bool(1, convert_alpha); #boxm_batch.run_process(); #(scene_id, scene_type) = boxm_batch.commit_output(0); #apm_scene = dbvalue(scene_id, scene_type);
if not os.path.isdir(rgb_dir + '/'): print "Invalid RGB Dir" sys.exit(-1); if not os.path.isdir(grey_dir + '/'): os.mkdir(grey_dir + '/'); rgb_imgs = glob.glob1(rgb_dir, '*.png'); for img in rgb_imgs: #tif_img_name = os.path.splitext(img)[0] + '.tif'; boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,rgb_dir + '/' + img); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); rgb_img = dbvalue(id,type); boxm_batch.init_process("vilRGBToGreyProcess"); boxm_batch.set_input_from_db(0,rgb_img); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); grey_img = dbvalue(id,type); boxm_batch.init_process("vilSaveImageViewProcess"); boxm_batch.set_input_from_db(0,grey_img); boxm_batch.set_input_string(1,grey_dir + '/' + img); boxm_batch.run_process();
out_key_name="frame_%05d.key"; out_match_img_name="frame_%05d_with_keys_of_%05d.jpg"; out_match_img_refined_name="frame_%05d_with_keys_of_%05d_refined.jpg"; out_video_site_file="tracks.xml"; every_nth = 16; # use every nth image of the video sequence to guarantee view disparity keypoints_available = 0; outlier_threshold = 9.0; # after finding F between a pair, all matches that are off by 9.0 pixels are considered outliers min_number_of_matches = 16; # for an image pair to be connected in the image connectivity graph sizes = []; for i in range(0,img_cnt,1): print("Loading Image"); boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,img_path + img_name % (i*every_nth+1)); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); image = dbvalue(id,type); boxm_batch.init_process("vilImageSizeProcess"); boxm_batch.set_input_from_db(0, image); boxm_batch.run_process(); (ni_id, type) = boxm_batch.commit_output(0); (nj_id, type) = boxm_batch.commit_output(1); ni=boxm_batch.get_input_unsigned(ni_id); nj=boxm_batch.get_input_unsigned(nj_id); if ni > nj: sizes.append(ni); else: sizes.append(nj);
# Capitol model_dir = "/Users/isa/Experiments/CapitolBOXM_4_4_2"; model_imgs_dir = "/Users/isa/Experiments/CapitolBOXM_4_4_2/imgs" if not os.path.isdir( model_imgs_dir + "/"): os.mkdir( model_imgs_dir + "/"); image_fnames = "/Volumes/vision/video/dec/CapitolSiteHigh/video_grey/frame_%05d.png"; camera_fnames = "/Volumes/vision/video/dec/capitol_sfm_rotated/cameras_KRT/camera_%05d.txt"; expected_fname = model_imgs_dir + "/expected_%05d.tiff"; image_id_fname = model_imgs_dir + "/schedule2.txt"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/capitol_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Virtual Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % 40); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); vcam = dbvalue(id,type); nframes =255; #import random; #schedule = [i for i in range(0,nframes)];
class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string #Parse inputs parser = optparse.OptionParser(description='Compute PCA Error Scene'); parser.add_option('--model_dir', action="store", dest="model_dir"); options, args = parser.parse_args(); model_dir = options.model_dir; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/boxm_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene= dbvalue(scene_id, scene_type); print("*************************************"); print("Splitting the scene"); boxm_batch.init_process("boxmSplitSceneProcess"); boxm_batch.set_input_from_db(0, scene); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); apm_scene = dbvalue(scene_id, scene_type); (scene_id, scene_type) = boxm_batch.commit_output(1); alpha_scene = dbvalue(scene_id, scene_type);
model_dir = options.model_dir; model_name = options.model_name; if len(model_dir) == 0: print "Missing Model Dir" sys.exit(-1); if len(model_name) == 0: print "Missing Model Name" sys.exit(-1); print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/" + str(model_name) + ".xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("*************************************"); print("Filling internal nodes"); boxm_batch.init_process("boxm_fill_internal_cells_process"); boxm_batch.set_input_from_db(0, scene); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); filled_scene = dbvalue(scene_id, scene_type);
import boxm_batch; boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string model_dir="/Users/isa/Experiments/DowntownBOXM_12_12_4"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/mean_color_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene= dbvalue(scene_id, scene_type); print("Save Scene"); boxm_batch.init_process("boxmSaveSceneRawProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_string(1, model_dir + "/raw_mean_scene"); boxm_batch.set_input_unsigned(2,0); boxm_batch.set_input_unsigned(3,1); boxm_batch.run_process();
self.type = type # string #dir = "/Users/isa/Experiments/super3d/sr2_scene_sr2_images/expectedImgs_1" #dir = "/Users/isa/Experiments/super3d/sr2_3scene_sr2_images/expectedImgs_2" #dir = "/Users/isa/Experiments/super3d/scene_sr2_images/expectedImgs_2" #dir = "/Users/isa/Experiments/super3d/scene/expectedImgs_2" #dir = "/Volumes/vision/video/isabel/super3d/scili_experiment/normal_scene/expectedImgs_0" dir = "/Users/isa/Experiments/super3d/scili_experiments_bicubic/sr2_scene_sr2_images/expectedImgs_0" boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,dir + "/exepected_var.tiff"); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); var_img = dbvalue(id,type); boxm_batch.init_process("vilImageMeanProcess"); boxm_batch.set_input_from_db(0,var_img); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); mean = dbvalue(id,type); mean_val = boxm_batch.get_output_float(mean.id); mean_file = dir + "/mean_var.txt" f = open(mean_file, 'w'); f.write(str(mean_val));
camera_fnames = glob.glob("Z:/video/dec/CapitolSiteHigh/cameras_KRT/*.txt"); min_range = 10; last_i = -min_range; nframes = 145; for x in range(125,nframes,1): i = random.randint(0,254); # try, try again if this frame is too close to the last while (abs(i - last_i) < min_range): i = random.randint(0,254); last_i = i; print("Loading Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames[i]); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); cam = dbvalue(id,type); print("Loading Image"); boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,image_fnames[i]); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); image = dbvalue(id,type); print("Updating Scene"); boxm_batch.init_process("boxmUpdateProcess"); boxm_batch.set_input_from_db(0,image); boxm_batch.set_input_from_db(1,cam);
def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string model_dir ="/Users/isa/Experiments/CapitolBOXM_6_4_4"; output_path = "/Users/isa/Experiments/tests/ocl_scene"; if not os.path.isdir( output_path + "/"): os.mkdir( output_path + "/"); max_mb = -1; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir + "/capitol_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Convert Scene"); boxm_batch.init_process("boxmOclConvertBoxmToOclProcess"); boxm_batch.set_input_from_db(0, scene); boxm_batch.set_input_string(1, output_path); boxm_batch.set_input_int(2, -1); boxm_batch.set_input_bool(3, 0); boxm_batch.run_process(); # print("Refine Scene"); # boxm_batch.init_process("boxmOclRefineProcess");
if len(model_dir) == 0: print "Missing Model Dir" sys.exit(-1); if len(model_name) == 0: print "Missing Model Name" sys.exit(-1); if len(model_out_name) == 0: print "Missing Model Out Name" sys.exit(-1); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/" + str(model_name) + ".xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("*************************************"); boxm_batch.init_process("boxm_remove_level0_process"); boxm_batch.set_input_from_db(0, scene); boxm_batch.set_input_string(1, model_out_name); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); restructured_scene = dbvalue(scene_id, scene_type); print("*************************************"); boxm_batch.init_process("boxmSaveOccupancyRawProcess");
# write camera indices to file image_ids = []; fd = open(image_id_fname,"w"); print >>fd, len(camera_idx); for c in camera_idx: img_id = "gray%d" % c; image_ids.append(img_id); print >>fd, img_id; fd.close(); # load scene print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Virtual Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fname % 0); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); vcam = dbvalue(id,type); vcam = dbvalue(id,type); for it in range(0,num_its,1): for c in range(0,len(camera_idx),1):
boxm_batch.register_datatypes() scene_path = "/Users/isa/Experiments/tests/ocl_scene/scene.xml" camera_path = "/Volumes/vision/video/dec/capitol_sfm_rotated/cameras_KRT/camera_00040.txt" image_path = "/Volumes/vision/video/dec/CapitolSiteHigh/video/frame_00040.png" int_image_path = "/Volumes/vision/video/dec/CapitolSiteHigh/video_grey/frame_00040.png" # scene_path = "F:/visdt/sceneocl/scene.xml"; # image_path ="f:/visdt/cd/_00113.png"; # int_image_path ="F:/visdt/imgs/gray00113.png"; # camera_path="f:/visdt/cameras_KRT/camera_00113.txt" print ("Load Initial camera ") boxm_batch.init_process("vpglLoadPerspectiveCameraProcess") boxm_batch.set_input_string(0, camera_path) boxm_batch.run_process() (id, type) = boxm_batch.commit_output(0) cam = dbvalue(id, type) print ("initializing ray tracing") boxm_batch.init_process("boxmOclInitRenderProbeProcess") boxm_batch.set_input_string(0, scene_path) boxm_batch.set_input_from_db(1, cam) boxm_batch.set_input_unsigned(2, 200) boxm_batch.set_input_unsigned(3, 200) boxm_batch.run_process() (scene_id, scene_type) = boxm_batch.commit_output(0) scene_mgr = dbvalue(scene_id, scene_type) image2 = Image.open(int_image_path)
#dir = "/Volumes/vision/video/isabel/super3d/scili_experiment/sr2_scene_sr2_images/expectedImgs_0" #original_img_dir = "/Volumes/vision/video/isabel/super3d/site12_superres" #dir = "/Volumes/vision/video/isabel/super3d/scili_experiment/normal_scene/expectedImgs_0" #original_img_dir ="/Volumes/vision/video/helicopter_providence/3d_models_3_11/site12/frames_grey" dir = "/Users/isa/Experiments/super3d/scili_experiments_bicubic/sr2_scene_sr2_images/expectedImgs_0" original_img_dir = "/Users/isa/Experiments/super3d/scili_experiments_bicubic/superresolved_imgs" npixels = 720*1280*4 test_frames=[78, 196, 244, 42]; ssd_vals=[]; ssd_avg = 0; for frame in test_frames: boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,dir + "/predicted_img_%(#)05d.tiff"%{"#":frame}); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); pred_img = dbvalue(id,type); boxm_batch.init_process("vilConvertPixelTypeProcess"); boxm_batch.set_input_from_db(0,pred_img); boxm_batch.set_input_string(1, "byte"); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); pred_img_byte = dbvalue(id,type); boxm_batch.init_process("vilSaveImageViewProcess"); boxm_batch.set_input_from_db(0,pred_img_byte); boxm_batch.set_input_string(1,dir + "/predicted_img_%(#)05d.png"%{"#":frame}); boxm_batch.run_process();
min_range = 10; last_i = -min_range; nframes = 145; for x in range(125,nframes,1): print("*************************************************************************************"); print x; i = random.randint(0,254); # try, try again if this frame is too close to the last while (abs(i - last_i) < min_range): i = random.randint(0,254); last_i = i; print("Loading Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % i); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); cam = dbvalue(id,type); print("Loading Image"); boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,image_fnames % i); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); image = dbvalue(id,type); print("Updating Scene"); boxm_batch.init_process("boxmUpdateProcess"); boxm_batch.set_input_from_db(0,image); boxm_batch.set_input_from_db(1,cam);
def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string # Synthetic model_dir = "/Users/isa/Experiments/Synthetic"; model_imgs_dir = "/Users/isa/Experiments/Synthetic/imgs" camera_fnames = "/Users/isa/Documents/Scripts/python_voxel/bvxm/synth_world/cam_%d.txt"; image_fnames = "/Users/isa/Documents/Scripts/python_voxel/bvxm/synth_world/test_img%d.tif"; expected_fname = model_imgs_dir + "/expected_%d.tiff"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Virtual Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % 40); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); vcam = dbvalue(id,type); nframes =255; import random; schedule = [i for i in range(0,nframes)];
if len(model_dir) == 0: print "Missing Model Dir" sys.exit(-1); if len(model_name) == 0: print "Missing Model Name" sys.exit(-1); if not os.path.isdir(model_dir +"/"): print "Invalid Model Dir" sys.exit(-1); print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir + "/" + model_name + ".xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene= dbvalue(scene_id, scene_type); #print("*************************************"); #print("Save Scene"); #boxm_batch.init_process("boxmSaveOccupancyRawProcess"); #boxm_batch.set_input_from_db(0,scene); #boxm_batch.set_input_string(1,model_dir + "/" + model_name); #boxm_batch.set_input_unsigned(2,0); #boxm_batch.set_input_unsigned(3,1); #boxm_batch.run_process(); print("*************************************"); print("Computing Excpected Color Scene");
out_video_site_file = "tracks.xml" every_nth = 16 # use every nth image of the video sequence to guarantee view disparity keypoints_available = 0 # after finding F between a pair, all matches that are off by 9.0 pixels # are considered outliers outlier_threshold = 9.0 # for an image pair to be connected in the image connectivity graph min_number_of_matches = 16 sizes = [] for i in range(0, img_cnt, 1): print("Loading Image") boxm_batch.init_process("vilLoadImageViewProcess") boxm_batch.set_input_string(0, img_path + img_name % (i * every_nth + 1)) boxm_batch.run_process() (id, type) = boxm_batch.commit_output(0) image = dbvalue(id, type) boxm_batch.init_process("vilImageSizeProcess") boxm_batch.set_input_from_db(0, image) boxm_batch.run_process() (ni_id, type) = boxm_batch.commit_output(0) (nj_id, type) = boxm_batch.commit_output(1) ni = boxm_batch.get_input_unsigned(ni_id) nj = boxm_batch.get_input_unsigned(nj_id) if ni > nj: sizes.append(ni) else: sizes.append(nj)
import boxm_batch; boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string model_dir ="/Users/isa/Experiments/CapitolBOXM_1_1_1"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/gaussf1_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); gauss_scene = dbvalue(scene_id, scene_type); print("*************************************"); print("Computing Entropies"); boxm_batch.init_process("boxmComputeEntropyProcess"); boxm_batch.set_input_from_db(0, gauss_scene); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); entropy_scene = dbvalue(scene_id, scene_type);
import boxm_batch boxm_batch.register_processes() boxm_batch.register_datatypes() class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string print("Loading Scene") boxm_batch.init_process("boxmLoadSceneProcess") boxm_batch.set_input_string(0, "D:\\vj\\data\\CapitolSiteHigh\\boxm\\scene.xml") boxm_batch.set_input_string(1, "apm_mog_grey") boxm_batch.run_process() (scene_id, scene_type) = boxm_batch.commit_output(0) scene = dbvalue(scene_id, scene_type) print("Loading camera") boxm_batch.init_process("vpglLoadPerspectiveCameraProcess") boxm_batch.set_input_string(0, "camera_00116.txt") boxm_batch.run_process() (cam_id, cam_type) = boxm_batch.commit_output(0) camera = dbvalue(cam_id, cam_type) print("Rendering Image") boxm_batch.init_process("boxmRenderExpectedProcess") boxm_batch.set_input_from_db(0, scene) boxm_batch.set_input_from_db(1, camera)
boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string model_dir = "/Users/isa/Experiments/CapitolBOXM"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); #print("Save Scene"); #boxm_batch.init_process("boxmSaveOccupancyRawProcess"); #boxm_batch.set_input_from_db(0,scene); #boxm_batch.set_input_string(1,model_dir + "/scene"); #boxm_batch.set_input_unsigned(2,0); #boxm_batch.set_input_unsigned(3,1); #boxm_batch.run_process(); print("Crop Scene"); boxm_batch.init_process("boxmCropSceneProcess"); boxm_batch.set_params_process(model_dir + "/crop_scene_params.xml");
import boxm_batch; boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string model_dir ="/Users/isa/Experiments/CapitolBOXM_1_1_1"; print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/apm_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); mog_scene = dbvalue(scene_id, scene_type); print("*************************************"); print("Merging the scene"); boxm_batch.init_process("boxmMergeMixturesProcess"); boxm_batch.set_input_from_db(0, mog_scene); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); gauss_scene = dbvalue(scene_id, scene_type);
boxm_batch.register_processes() boxm_batch.register_datatypes() class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string dir = "/Users/isa/Experiments/super3d/scene/expectedImgs_2" test_frames = [8, 112, 96, 208] for frame in test_frames: boxm_batch.init_process("vilLoadImageViewProcess") boxm_batch.set_input_string(0, dir + "/predicted_img_mask_%(#)05d.tiff" % {"#": frame}) boxm_batch.run_process() (id, type) = boxm_batch.commit_output(0) vis_img = dbvalue(id, type) boxm_batch.init_process("vilThresholdImageProcess") boxm_batch.set_input_from_db(0, vis_img) boxm_batch.set_input_float(1, 0.99) boxm_batch.set_input_bool(2, True) boxm_batch.run_process() (id, type) = boxm_batch.commit_output(0) mask_img = dbvalue(id, type) boxm_batch.init_process("vilSaveImageViewProcess") boxm_batch.set_input_from_db(0, mask_img) boxm_batch.set_input_string(1, dir + "/binary_mask_%(#)05d.tiff" % {"#": frame})
out_key_name="kermit%03d.key"; out_match_img_name="kermit%03d_with_keys_of%03d.jpg"; out_match_img_refined_name="kermit%03d_with_keys_of%03d_refined.jpg"; out_video_site_file="kermit_video_site.xml"; keys_available = 0; # if keys have already been extracted, just load them outlier_threshold_percentage = 0.6; # after finding F between a pair, all matches that are off by 0.6% of max(image_width, image_height) pixels are considered outliers min_number_of_matches = 16; # for an image pair to be connected in the image connectivity graph imgs = []; sizes = []; for i in range(0,img_cnt,1): print("Loading Image"); boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,img_path + img_name % i); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); image = dbvalue(id,type); imgs.append(image); boxm_batch.init_process("vilImageSizeProcess"); boxm_batch.set_input_from_db(0, image); boxm_batch.run_process(); (ni_id, type) = boxm_batch.commit_output(0); (nj_id, type) = boxm_batch.commit_output(1); ni=boxm_batch.get_input_unsigned(ni_id); nj=boxm_batch.get_input_unsigned(nj_id); if ni > nj: sizes.append(ni); else: