def test_build_bracket_2017(): build_bracket( teamsPath=pkg_resources.resource_filename('bracketeer', 'tests/input/teams.csv'), seedsPath=pkg_resources.resource_filename('bracketeer', 'tests/input/seeds.csv'), slotsPath=pkg_resources.resource_filename('bracketeer', 'tests/input/slots.csv'), submissionPath=pkg_resources.resource_filename('bracketeer', 'tests/input/sub.csv'), year=2017, outputPath='output.png' ) assert(os.path.isfile('output.png'))
def build_bracket_output(): b = build_bracket(outputPath=base_url + 'output.png', teamsPath=base_url + 'data/raw/Teams.csv', seedsPath=base_url + 'data/raw/NCAATourneySeeds.csv', submissionPath=base_url + 'data/processed/2019Predictions.csv', slotsPath=base_url + 'data/raw/NCAATourneySlots.csv', year=2019)
from bracketeer import build_bracket m = build_bracket(outputPath='bracket.png', teamsPath='data/Teams.csv', seedsPath='data/NCAATourneySeeds.csv', submissionPath='SubmissionStage2.csv', slotsPath='data/NCAATourneySlots.csv', year=2019) # output feedback print() print() print("2019 Bracket creation complete.") print() print()
from bracketeer import build_bracket b = build_bracket(outputPath='../output/Moutput.png', teamsPath='../Minput2/Teams.csv', seedsPath='../Minput3/NCAATourneySeeds.csv', submissionPath='../output/Mstats_2018_AB.csv', slotsPath='../Minput3/NCAATourneySlots.csv', year=2018)
"w") as f: f.write("ID,Pred\n") with open(f"./Results/2021_Stage2_{MODEL_SELECTED}_first_round.csv", "a") as f: for i, id, _ in stage_1_comp.itertuples(): year, t1, t2 = id.split("_") year, t1, t2 = int(year), int(t1), int(t2) if year not in feature_dfs.keys(): print(year) feature_dfs[year] = pd.read_csv( "./Data/Training/features_{:d}.csv".format(year)) matchup = get_matchup_data(t1, t2, feature_dfs[year]) matchup = np.array(matchup).reshape(1, -1) matchup = scaler.transform(matchup) prediction = model.predict_proba(matchup).flatten() if write == True: f.write(f"{id},{prediction[0]}\n") else: print(id, prediction[0]) if write: b = build_bracket( outputPath=f'Results/2021_bracket_{MODEL_SELECTED}_first_round.png', teamsPath='Data/Stage2/MTeams.csv', seedsPath='Data/Stage2/MNCAATourneySeeds.csv', submissionPath=f'Results/2021_Stage2_{MODEL_SELECTED}_first_round.csv', slotsPath='Data/Stage2/MNCAATourneySlots.csv', resultsPath='Results/first_round_misses.csv', year=2021)
clf = svm.SVC(C=10.0, gamma=.0001, probability=True) svm_param_grid = { 'clf__C': np.logspace(start=-3, stop=3, num=7), 'clf__gamma': np.logspace(start=-4, stop=-1, num=4) } clf.fit(train_inputs, train_labels) res = clf.predict(test_inputs) print(accuracy_score(test_labels, res)) df_predict = pd.read_csv('./csv_data/SampleSubmissionStage2.csv') # Create pipeline for scaling and classifying: pipe = Pipeline([('clf', clf)]) lr_search = GridSearchCV(pipe, svm_param_grid, cv=10) lr_search.fit(train_inputs, train_labels) print(lr_search.best_params_) perm = PermutationImportance(lr_search, random_state=1).fit(test_inputs, test_labels) predict_poss_matches(lr_search, df_predict, df_features).to_csv('best_model_results2.csv', index=False) b = build_bracket(outputPath='best_bracket.png', submissionPath='best_model_results2.csv', teamsPath='./csv_data/Teams.csv', seedsPath='./csv_data/NCAATourneySeeds.csv', slotsPath='./csv_data/NCAATourneySlots.csv', year=2019)
model = pickle.load(open("models/modelv2.sav", "rb")) print("Getting teams") print("Predicting matchups") seeds = pd.read_csv(folder + '/NCAATourneySeeds.csv') tourney_teams = [] for year in prediction_range: for index, row in seeds.iterrows(): if row['Season'] == year: team_seeds[year][row['TeamID']] = row['Seed'] tourney_teams.append(row['TeamID']) tourney_teams.sort() get_teams(tourney_teams, year) tourney_teams.clear() prediction_path = 'predictions/submission_1.csv' print(f"Writing {len(final_data)} results") with open(prediction_path, 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['ID', 'Pred']) writer.writerows(final_data) m = build_bracket(outputPath='output.png', teamsPath='Data/Teams.csv', seedsPath='Data/NCAATourneySeeds.csv', submissionPath=prediction_path, slotsPath='Data/NCAATourneySlots.csv', year=prediction_year)
teamsout = ( teams[['new_id', 'new_teamname']] .rename(columns={'new_id': 'TeamID', 'new_teamname': 'TeamName'}) ) seedsout = ( seeds[['Season', 'new_seed', 'new_teamid']] .rename(columns={'new_seed': 'Seed', 'new_teamid': 'TeamID'}) ) slotsout = ( slots[['Season', 'new_slot', 'new_strongseed', 'new_weakseed']] .rename(columns={'new_slot': 'Slot', 'new_strongseed': 'StrongSeed', 'new_weakseed': 'WeakSeed'}) ) subout = ( sub[['new_id', 'new_pred']] .rename(columns={'new_id': 'ID', 'new_pred': 'Pred'}) ) teamsout.to_csv('input\\teams.csv', index=False) seedsout.to_csv('input\\seeds.csv', index=False) slotsout.to_csv('input\\slots.csv', index=False) subout.to_csv('input\\sub.csv', index=False) b = build_bracket( outputPath='output.png', teamsPath='input\\teams.csv', seedsPath='input\\seeds.csv', submissionPath='submissions\\ensemble_pred.csv', slotsPath='input\\slots.csv', year=2018 )
import pip pip.main(['install', 'binarytree']) pip.main(['install', 'bracketeer']) from bracketeer import build_bracket b = build_bracket(teamsPath='input/Teams.csv', seedsPath='input/NCAATourneySeeds.csv', submissionPath='nbs/predictions.csv', slotsPath='input/NCAATourneySlots.csv', year=2018)