Esempio n. 1
0
 def get_monitors(self, input_time_length):
     monitors = [LossMonitor(), RuntimeMonitor()]
     if self.cropped:
         monitors.append(CroppedTrialMisclassMonitor(input_time_length))
     else:
         monitors.append(MisclassMonitor())
     return monitors
Esempio n. 2
0
def train(config):
    cuda = True
    model = config['model']
    if model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2,
                         config=config).create_network()

    to_dense_prediction_model(model)
    if cuda:
        model.cuda()

    log.info("Model: \n{:s}".format(str(model)))
    dummy_input = np_to_var(train_set.X[:1, :, :, None])
    if cuda:
        dummy_input = dummy_input.cuda()
    out = model(dummy_input)

    n_preds_per_input = out.cpu().data.numpy().shape[2]

    optimizer = optim.Adam(model.parameters())

    iterator = CropsFromTrialsIterator(batch_size=60,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    stop_criterion = Or([MaxEpochs(20), NoDecrease('valid_misclass', 80)])

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    print(exp.rememberer)
    return exp.rememberer.lowest_val
Esempio n. 3
0
    def setUp(self):
        args = parse_args(
            ['-e', 'tests', '-c', '../configurations/config.ini'])
        init_config(args.config)
        configs = get_configurations(args.experiment)
        assert (len(configs) == 1)
        global_vars.set_config(configs[0])
        global_vars.set('eeg_chans', 22)
        global_vars.set('num_subjects', 9)
        global_vars.set('input_time_len', 1125)
        global_vars.set('n_classes', 4)
        set_params_by_dataset()
        input_shape = (50, global_vars.get('eeg_chans'),
                       global_vars.get('input_time_len'))

        class Dummy:
            def __init__(self, X, y):
                self.X = X
                self.y = y

        dummy_data = Dummy(X=np.ones(input_shape, dtype=np.float32),
                           y=np.ones(50, dtype=np.longlong))
        self.iterator = BalancedBatchSizeIterator(
            batch_size=global_vars.get('batch_size'))
        self.loss_function = F.nll_loss
        self.monitors = [
            LossMonitor(),
            MisclassMonitor(),
            GenericMonitor('accuracy', acc_func),
            RuntimeMonitor()
        ]
        self.stop_criterion = Or([
            MaxEpochs(global_vars.get('max_epochs')),
            NoDecrease('valid_misclass',
                       global_vars.get('max_increase_epochs'))
        ])
        self.naiveNAS = NaiveNAS(iterator=self.iterator,
                                 exp_folder='../tests',
                                 exp_name='',
                                 train_set=dummy_data,
                                 val_set=dummy_data,
                                 test_set=dummy_data,
                                 stop_criterion=self.stop_criterion,
                                 monitors=self.monitors,
                                 loss_function=self.loss_function,
                                 config=global_vars.config,
                                 subject_id=1,
                                 fieldnames=None,
                                 model_from_file=None)
Esempio n. 4
0
def network_model(model, train_set, test_set, valid_set, n_chans, input_time_length, cuda):
	
	max_epochs = 30 
	max_increase_epochs = 10 
	batch_size = 64 
	init_block_size = 1000

	set_random_seeds(seed=20190629, cuda=cuda)

	n_classes = 2 
	n_chans = n_chans
	input_time_length = input_time_length

	if model == 'deep':
		model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length,
						 final_conv_length='auto').create_network()

	elif model == 'shallow':
		model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length,
								final_conv_length='auto').create_network()

	if cuda:
		model.cuda()

	log.info("%s model: ".format(str(model))) 

	optimizer = AdamW(model.parameters(), lr=0.00625, weight_decay=0)

	iterator = BalancedBatchSizeIterator(batch_size=batch_size) 

	stop_criterion = Or([MaxEpochs(max_epochs),
						 NoDecrease('valid_misclass', max_increase_epochs)])

	monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

	model_constraint = None
	print(train_set.X.shape[0]) 

	model_test = Experiment(model, train_set, valid_set, test_set, iterator=iterator,
							loss_function=F.nll_loss, optimizer=optimizer,
							model_constraint=model_constraint, monitors=monitors,
							stop_criterion=stop_criterion, remember_best_column='valid_misclass',
							run_after_early_stop=True, cuda=cuda)

	model_test.run()
	return model_test 
Esempio n. 5
0
def train_completetrials(train_set,
                         test_set,
                         n_classes,
                         max_epochs=100,
                         batch_size=60,
                         iterator=None,
                         cuda=True):
    model = build_model(train_set.X.shape[2],
                        int(train_set.X.shape[1]),
                        n_classes,
                        cropped=False)
    if iterator is None:
        iterator = BalancedBatchSizeIterator(batch_size=batch_size,
                                             seed=np.random.randint(9999999))
    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]
    loss_function = F.nll_loss

    return train(train_set, test_set, model, iterator, monitors, loss_function,
                 max_epochs, cuda)
Esempio n. 6
0
def network_model(subject_id, model_type, data_type, cropped, cuda, parameters, hyp_params):
	best_params = dict() # dictionary to store hyper-parameter values

	#####Parameter passed to funciton#####
	max_epochs  = parameters['max_epochs']
	max_increase_epochs = parameters['max_increase_epochs']
	batch_size = parameters['batch_size']

	#####Constant Parameters#####
	best_loss = 100.0 # instatiate starting point for loss
	iterator = BalancedBatchSizeIterator(batch_size=batch_size)
	stop_criterion = Or([MaxEpochs(max_epochs),
						 NoDecrease('valid_misclass', max_increase_epochs)])
	monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]
	model_constraint = MaxNormDefaultConstraint()
	epoch = 4096

	#####Collect and format data#####
	if data_type == 'words':
		data, labels = format_data(data_type, subject_id, epoch)
		data = data[:,:,768:1280] # within-trial window selected for classification
	elif data_type == 'vowels':
		data, labels = format_data(data_type, subject_id, epoch)
		data = data[:,:,512:1024]
	elif data_type == 'all_classes':
		data, labels = format_data(data_type, subject_id, epoch)
		data = data[:,:,768:1280]
	
	x = lambda a: a * 1e6 # improves numerical stability
	data = x(data)
	
	data = normalize(data)
	data, labels = balanced_subsample(data, labels) # downsampling the data to ensure equal classes
	data, _, labels, _ = train_test_split(data, labels, test_size=0, random_state=42) # redundant shuffle of data/labels

	#####model inputs#####
	unique, counts = np.unique(labels, return_counts=True)
	n_classes = len(unique)
	n_chans   = int(data.shape[1])
	input_time_length = data.shape[2]

	#####k-fold nested corss-validation#####
	num_folds = 4
	skf = StratifiedKFold(n_splits=num_folds, shuffle=True, random_state=10)
	out_fold_num = 0 # outer-fold number
	
	cv_scores = []
	#####Outer=Fold#####
	for inner_ind, outer_index in skf.split(data, labels):
		inner_fold, outer_fold     = data[inner_ind], data[outer_index]
		inner_labels, outer_labels = labels[inner_ind], labels[outer_index]
		out_fold_num += 1
		 # list for storing cross-validated scores
		loss_with_params = dict()# for storing param values and losses
		in_fold_num = 0 # inner-fold number
		
		#####Inner-Fold#####
		for train_idx, valid_idx in skf.split(inner_fold, inner_labels):
			X_Train, X_val = inner_fold[train_idx], inner_fold[valid_idx]
			y_train, y_val = inner_labels[train_idx], inner_labels[valid_idx]
			in_fold_num += 1
			train_set = SignalAndTarget(X_Train, y_train)
			valid_set = SignalAndTarget(X_val, y_val)
			loss_with_params[f"Fold_{in_fold_num}"] = dict()
			
			####Nested cross-validation#####
			for drop_prob in hyp_params['drop_prob']:
				for loss_function in hyp_params['loss']:
					for i in range(len(hyp_params['lr_adam'])):
						model = None # ensure no duplication of models
						# model, learning-rate and optimizer setup according to model_type
						if model_type == 'shallow':
							model =  ShallowFBCSPNet(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
										 n_filters_time=80, filter_time_length=40, n_filters_spat=80, 
										 pool_time_length=75, pool_time_stride=25, final_conv_length='auto',
										 conv_nonlin=square, pool_mode='max', pool_nonlin=safe_log, 
										 split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1,
										 drop_prob=drop_prob).create_network()
							lr = hyp_params['lr_ada'][i]
							optimizer = optim.Adadelta(model.parameters(), lr=lr, rho=0.9, weight_decay=0.1, eps=1e-8)
						elif model_type == 'deep':
							model = Deep4Net(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
										 final_conv_length='auto', n_filters_time=20, n_filters_spat=20, filter_time_length=10,
										 pool_time_length=3, pool_time_stride=3, n_filters_2=50, filter_length_2=15,
										 n_filters_3=100, filter_length_3=15, n_filters_4=400, filter_length_4=10,
										 first_nonlin=leaky_relu, first_pool_mode='max', first_pool_nonlin=safe_log, later_nonlin=leaky_relu,
										 later_pool_mode='max', later_pool_nonlin=safe_log, drop_prob=drop_prob, 
										 double_time_convs=False, split_first_layer=False, batch_norm=True, batch_norm_alpha=0.1,
										 stride_before_pool=False).create_network() #filter_length_4 changed from 15 to 10
							lr = hyp_params['lr_ada'][i]
							optimizer = optim.Adadelta(model.parameters(), lr=lr, weight_decay=0.1, eps=1e-8)
						elif model_type == 'eegnet':
							model = EEGNetv4(in_chans=n_chans, n_classes=n_classes, final_conv_length='auto', 
										 input_time_length=input_time_length, pool_mode='mean', F1=16, D=2, F2=32,
										 kernel_length=64, third_kernel_size=(8,4), drop_prob=drop_prob).create_network()
							lr = hyp_params['lr_adam'][i]
							optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0, eps=1e-8, amsgrad=False)
						
						set_random_seeds(seed=20190629, cuda=cuda)
						
						if cuda:
							model.cuda()
							torch.backends.cudnn.deterministic = True
						model = torch.nn.DataParallel(model)
						log.info("%s model: ".format(str(model)))

						loss_function = loss_function
						model_loss_function = None

						#####Setup to run the selected model#####
						model_test = Experiment(model, train_set, valid_set, test_set=None, iterator=iterator,
												loss_function=loss_function, optimizer=optimizer,
												model_constraint=model_constraint, monitors=monitors,
												stop_criterion=stop_criterion, remember_best_column='valid_misclass',
												run_after_early_stop=True, model_loss_function=model_loss_function, cuda=cuda,
												data_type=data_type, subject_id=subject_id, model_type=model_type, 
												cropped=cropped, model_number=str(out_fold_num)) 

						model_test.run()
						model_loss = model_test.epochs_df['valid_loss'].astype('float')
						current_val_loss = current_loss(model_loss)
						loss_with_params[f"Fold_{in_fold_num}"][f"{drop_prob}/{loss_function}/{lr}"] = current_val_loss

		####Select and train optimized model#####
		df = pd.DataFrame(loss_with_params)
		df['mean'] = df.mean(axis=1) # compute mean loss across k-folds
		writer_df = f"results_folder\\results\\S{subject_id}\\{model_type}_parameters.xlsx"
		df.to_excel(writer_df)
		
		best_dp, best_loss, best_lr = df.loc[df['mean'].idxmin()].__dict__['_name'].split("/") # extract best param values
		if str(best_loss[10:13]) == 'nll':
			best_loss = F.nll_loss
		elif str(best_loss[10:13]) == 'cro':
			best_loss = F.cross_entropy
		
		print(f"Best parameters: dropout: {best_dp}, loss: {str(best_loss)[10:13]}, lr: {best_lr}")

		#####Train model on entire inner fold set#####
		torch.backends.cudnn.deterministic = True
		model = None
		#####Create outer-fold validation and test sets#####
		X_valid, X_test, y_valid, y_test = train_test_split(outer_fold, outer_labels, test_size=0.5, random_state=42, stratify=outer_labels)
		train_set = SignalAndTarget(inner_fold, inner_labels)
		valid_set = SignalAndTarget(X_valid, y_valid)
		test_set  = SignalAndTarget(X_test, y_test)


		if model_type == 'shallow':
			model =  ShallowFBCSPNet(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
						 n_filters_time=60, filter_time_length=5, n_filters_spat=40, 
						 pool_time_length=50, pool_time_stride=15, final_conv_length='auto',
						 conv_nonlin=relu6, pool_mode='mean', pool_nonlin=safe_log, 
						 split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1,
						 drop_prob=0.1).create_network() #50 works better than 75
			
			optimizer = optim.Adadelta(model.parameters(), lr=2.0, rho=0.9, weight_decay=0.1, eps=1e-8) 
			
		elif model_type == 'deep':
			model = Deep4Net(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
						 final_conv_length='auto', n_filters_time=20, n_filters_spat=20, filter_time_length=5,
						 pool_time_length=3, pool_time_stride=3, n_filters_2=20, filter_length_2=5,
						 n_filters_3=40, filter_length_3=5, n_filters_4=1500, filter_length_4=10,
						 first_nonlin=leaky_relu, first_pool_mode='mean', first_pool_nonlin=safe_log, later_nonlin=leaky_relu,
						 later_pool_mode='mean', later_pool_nonlin=safe_log, drop_prob=0.1, 
						 double_time_convs=False, split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1,
						 stride_before_pool=False).create_network()
			
			optimizer = AdamW(model.parameters(), lr=0.1, weight_decay=0)
		elif model_type == 'eegnet':
			model = EEGNetv4(in_chans=n_chans, n_classes=n_classes, final_conv_length='auto', 
						 input_time_length=input_time_length, pool_mode='mean', F1=16, D=2, F2=32,
						 kernel_length=64, third_kernel_size=(8,4), drop_prob=0.1).create_network()
			optimizer = optim.Adam(model.parameters(), lr=0.1, weight_decay=0, eps=1e-8, amsgrad=False) 
			

		if cuda:
			model.cuda()
			torch.backends.cudnn.deterministic = True
			#model = torch.nn.DataParallel(model)
		
		log.info("Optimized model")
		model_loss_function=None
		
		#####Setup to run the optimized model#####
		optimized_model = op_exp(model, train_set, valid_set, test_set=test_set, iterator=iterator,
								loss_function=best_loss, optimizer=optimizer,
								model_constraint=model_constraint, monitors=monitors,
								stop_criterion=stop_criterion, remember_best_column='valid_misclass',
								run_after_early_stop=True, model_loss_function=model_loss_function, cuda=cuda,
								data_type=data_type, subject_id=subject_id, model_type=model_type, 
								cropped=cropped, model_number=str(out_fold_num))
		optimized_model.run()

		log.info("Last 5 epochs")
		log.info("\n" + str(optimized_model.epochs_df.iloc[-5:]))
		
		writer = f"results_folder\\results\\S{subject_id}\\{data_type}_{model_type}_{str(out_fold_num)}.xlsx"
		optimized_model.epochs_df.iloc[-30:].to_excel(writer)

		accuracy = 1 - np.min(np.array(optimized_model.class_acc))
		cv_scores.append(accuracy) # k accuracy scores for this param set. 
		
	#####Print and store fold accuracies and mean accuracy#####
	
	print(f"Class Accuracy: {np.mean(np.array(cv_scores))}")
	results_df = pd.DataFrame(dict(cv_scores=cv_scores,
								   cv_mean=np.mean(np.array(cv_scores))))

	writer2 = f"results_folder\\results\\S{subject_id}\\{data_type}_{model_type}_cvscores.xlsx"
	results_df.to_excel(writer2)
	return optimized_model, np.mean(np.array(cv_scores))
Esempio n. 7
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(train_filepath,
                                        labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a, low_cut_hz, 38, train_cnt.info['sfreq'], filt_order=3, axis=1),
        train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a, low_cut_hz, 38, test_cnt.info['sfreq'], filt_order=3, axis=1),
        test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), (
        'Right Hand',
        [2],
    ), ('Foot', [3]), ('Tongue', [4])])
    ival = [-500, 4000]

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=60)

    stop_criterion = Or([MaxEpochs(1600), NoDecrease('valid_misclass', 160)])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    input_time_length = 1000
    max_epochs = 800
    max_increase_epochs = 80
    batch_size = 60
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = 0.2

    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(train_filepath,
                                        labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), (
        'Right Hand',
        [2],
    ), ('Foot', [3]), ('Tongue', [4])])

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=1 -
                                               valid_set_fraction)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()

    to_dense_prediction_model(model)
    if cuda:
        model.cuda()

    log.info("Model: \n{:s}".format(str(model)))
    dummy_input = np_to_var(train_set.X[:1, :, :, None])
    if cuda:
        dummy_input = dummy_input.cuda()
    out = model(dummy_input)

    n_preds_per_input = out.cpu().data.numpy().shape[2]

    optimizer = optim.Adam(model.parameters())

    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
Esempio n. 9
0
def run_exp(max_recording_mins, n_recordings, sec_to_cut,
            duration_recording_mins, max_abs_val, max_min_threshold,
            max_min_expected, shrink_val, max_min_remove, batch_set_zero_val,
            batch_set_zero_test, sampling_freq, low_cut_hz, high_cut_hz,
            exp_demean, exp_standardize, moving_demean, moving_standardize,
            channel_demean, channel_standardize, divisor, n_folds, i_test_fold,
            model_name, input_time_length, final_conv_length, batch_size,
            max_epochs, only_return_exp):
    cuda = True

    preproc_functions = []
    preproc_functions.append(lambda data, fs: (
        data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs))
    preproc_functions.append(lambda data, fs: (data[:, :int(
        duration_recording_mins * 60 * fs)], fs))
    if max_abs_val is not None:
        preproc_functions.append(
            lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs))
    if max_min_threshold is not None:
        preproc_functions.append(lambda data, fs: (clean_jumps(
            data, 200, max_min_threshold, max_min_expected, cuda), fs))
    if max_min_remove is not None:
        window_len = 200
        preproc_functions.append(lambda data, fs: (set_jumps_to_zero(
            data,
            window_len=window_len,
            threshold=max_min_remove,
            cuda=cuda,
            clip_min_max_to_zero=True), fs))

    if shrink_val is not None:
        preproc_functions.append(lambda data, fs: (shrink_spikes(
            data,
            shrink_val,
            1,
            9,
        ), fs))

    preproc_functions.append(lambda data, fs: (resampy.resample(
        data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq))
    preproc_functions.append(lambda data, fs: (bandpass_cnt(
        data, low_cut_hz, high_cut_hz, fs, filt_order=4, axis=1), fs))

    if exp_demean:
        preproc_functions.append(lambda data, fs: (exponential_running_demean(
            data.T, factor_new=0.001, init_block_size=100).T, fs))
    if exp_standardize:
        preproc_functions.append(
            lambda data, fs: (exponential_running_standardize(
                data.T, factor_new=0.001, init_block_size=100).T, fs))
    if moving_demean:
        preproc_functions.append(lambda data, fs: (padded_moving_demean(
            data, axis=1, n_window=201), fs))
    if moving_standardize:
        preproc_functions.append(lambda data, fs: (padded_moving_standardize(
            data, axis=1, n_window=201), fs))
    if channel_demean:
        preproc_functions.append(lambda data, fs: (demean(data, axis=1), fs))
    if channel_standardize:
        preproc_functions.append(lambda data, fs:
                                 (standardize(data, axis=1), fs))
    if divisor is not None:
        preproc_functions.append(lambda data, fs: (data / divisor, fs))

    all_file_names, labels = get_all_sorted_file_names_and_labels()
    lengths = np.load(
        '/home/schirrmr/code/auto-diagnosis/sorted-recording-lengths.npy')
    mask = lengths < max_recording_mins * 60
    cleaned_file_names = np.array(all_file_names)[mask]
    cleaned_labels = labels[mask]

    diffs_per_rec = np.load(
        '/home/schirrmr/code/auto-diagnosis/diffs_per_recording.npy')

    def create_set(inds):
        X = []
        for i in inds:
            log.info("Load {:s}".format(cleaned_file_names[i]))
            x = load_data(cleaned_file_names[i], preproc_functions)
            X.append(x)
        y = cleaned_labels[inds].astype(np.int64)
        return SignalAndTarget(X, y)

    if not only_return_exp:
        folds = get_balanced_batches(n_recordings,
                                     None,
                                     False,
                                     n_batches=n_folds)
        test_inds = folds[i_test_fold]
        valid_inds = folds[i_test_fold - 1]
        all_inds = list(range(n_recordings))
        train_inds = np.setdiff1d(all_inds, np.union1d(test_inds, valid_inds))

        rec_nr_sorted_by_diff = np.argsort(diffs_per_rec)[::-1]
        train_inds = rec_nr_sorted_by_diff[train_inds]
        valid_inds = rec_nr_sorted_by_diff[valid_inds]
        test_inds = rec_nr_sorted_by_diff[test_inds]

        train_set = create_set(train_inds)
        valid_set = create_set(valid_inds)
        test_set = create_set(test_inds)
    else:
        train_set = None
        valid_set = None
        test_set = None

    set_random_seeds(seed=20170629, cuda=cuda)
    # This will determine how many crops are processed in parallel
    n_classes = 2
    in_chans = 21
    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=in_chans,
            n_classes=n_classes,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(in_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=final_conv_length).create_network()

    optimizer = optim.Adam(model.parameters())
    to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2)[:, :, 0], targets)
    model_constraint = None
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    batch_modifier = None
    if batch_set_zero_val is not None:
        batch_modifier = RemoveMinMaxDiff(batch_set_zero_val,
                                          clip_max_abs=True,
                                          set_zero=True)
    if (batch_set_zero_val is not None) and (batch_set_zero_test == True):
        iterator = ModifiedIterator(
            iterator,
            batch_modifier,
        )
        batch_modifier = None
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     batch_modifier=batch_modifier,
                     cuda=cuda)
    if not only_return_exp:
        exp.run()
    else:
        exp.dataset = None
        exp.splitter = None

    return exp
def run_exp(
    data_folders,
    n_recordings,
    sensor_types,
    n_chans,
    max_recording_mins,
    sec_to_cut,
    duration_recording_mins,
    test_recording_mins,
    max_abs_val,
    sampling_freq,
    divisor,
    test_on_eval,
    n_folds,
    i_test_fold,
    shuffle,
    model_name,
    n_start_chans,
    n_chan_factor,
    input_time_length,
    final_conv_length,
    model_constraint,
    init_lr,
    batch_size,
    max_epochs,
    cuda,
):

    import torch.backends.cudnn as cudnn
    cudnn.benchmark = True
    preproc_functions = []
    preproc_functions.append(lambda data, fs: (
        data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs))
    preproc_functions.append(lambda data, fs: (data[:, :int(
        duration_recording_mins * 60 * fs)], fs))
    if max_abs_val is not None:
        preproc_functions.append(
            lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs))

    preproc_functions.append(lambda data, fs: (resampy.resample(
        data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq))

    if divisor is not None:
        preproc_functions.append(lambda data, fs: (data / divisor, fs))

    dataset = DiagnosisSet(n_recordings=n_recordings,
                           max_recording_mins=max_recording_mins,
                           preproc_functions=preproc_functions,
                           data_folders=data_folders,
                           train_or_eval='train',
                           sensor_types=sensor_types)
    if test_on_eval:
        if test_recording_mins is None:
            test_recording_mins = duration_recording_mins
        test_preproc_functions = copy(preproc_functions)
        test_preproc_functions[1] = lambda data, fs: (data[:, :int(
            test_recording_mins * 60 * fs)], fs)
        test_dataset = DiagnosisSet(n_recordings=n_recordings,
                                    max_recording_mins=None,
                                    preproc_functions=test_preproc_functions,
                                    data_folders=data_folders,
                                    train_or_eval='eval',
                                    sensor_types=sensor_types)
    X, y = dataset.load()
    max_shape = np.max([list(x.shape) for x in X], axis=0)
    assert max_shape[1] == int(duration_recording_mins * sampling_freq * 60)
    if test_on_eval:
        test_X, test_y = test_dataset.load()
        max_shape = np.max([list(x.shape) for x in test_X], axis=0)
        assert max_shape[1] == int(test_recording_mins * sampling_freq * 60)
    if not test_on_eval:
        splitter = TrainValidTestSplitter(n_folds,
                                          i_test_fold,
                                          shuffle=shuffle)
        train_set, valid_set, test_set = splitter.split(X, y)
    else:
        splitter = TrainValidSplitter(n_folds,
                                      i_valid_fold=i_test_fold,
                                      shuffle=shuffle)
        train_set, valid_set = splitter.split(X, y)
        test_set = SignalAndTarget(test_X, test_y)
        del test_X, test_y
    del X, y  # shouldn't be necessary, but just to make sure

    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         stride_before_pool=True).create_network()
    elif (model_name == 'deep_smac'):
        if model_name == 'deep_smac':
            do_batch_norm = False
        else:
            assert model_name == 'deep_smac_bnorm'
            do_batch_norm = True
        double_time_convs = False
        drop_prob = 0.244445
        filter_length_2 = 12
        filter_length_3 = 14
        filter_length_4 = 12
        filter_time_length = 21
        final_conv_length = 1
        first_nonlin = elu
        first_pool_mode = 'mean'
        first_pool_nonlin = identity
        later_nonlin = elu
        later_pool_mode = 'mean'
        later_pool_nonlin = identity
        n_filters_factor = 1.679066
        n_filters_start = 32
        pool_time_length = 1
        pool_time_stride = 2
        split_first_layer = True
        n_chan_factor = n_filters_factor
        n_start_chans = n_filters_start
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         batch_norm=do_batch_norm,
                         double_time_convs=double_time_convs,
                         drop_prob=drop_prob,
                         filter_length_2=filter_length_2,
                         filter_length_3=filter_length_3,
                         filter_length_4=filter_length_4,
                         filter_time_length=filter_time_length,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         split_first_layer=split_first_layer,
                         stride_before_pool=True).create_network()
    elif model_name == 'shallow_smac':
        conv_nonlin = identity
        do_batch_norm = True
        drop_prob = 0.328794
        filter_time_length = 56
        final_conv_length = 22
        n_filters_spat = 73
        n_filters_time = 24
        pool_mode = 'max'
        pool_nonlin = identity
        pool_time_length = 84
        pool_time_stride = 3
        split_first_layer = True
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_filters_time,
            n_filters_spat=n_filters_spat,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length,
            conv_nonlin=conv_nonlin,
            batch_norm=do_batch_norm,
            drop_prob=drop_prob,
            filter_time_length=filter_time_length,
            pool_mode=pool_mode,
            pool_nonlin=pool_nonlin,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            split_first_layer=split_first_layer,
        ).create_network()
    elif model_name == 'linear':
        model = nn.Sequential()
        model.add_module("conv_classifier",
                         nn.Conv2d(n_chans, n_classes, (600, 1)))
        model.add_module('softmax', nn.LogSoftmax())
        model.add_module('squeeze', Expression(lambda x: x.squeeze(3)))
    else:
        assert False, "unknown model name {:s}".format(model_name)
    to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    # determine output size
    test_input = np_to_var(
        np.ones((2, n_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    log.info("In shape: {:s}".format(str(test_input.cpu().data.numpy().shape)))

    out = model(test_input)
    log.info("Out shape: {:s}".format(str(out.cpu().data.numpy().shape)))
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    optimizer = optim.Adam(model.parameters(), lr=init_lr)

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    if model_constraint is not None:
        assert model_constraint == 'defaultnorm'
        model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedDiagnosisMonitor(input_time_length, n_preds_per_input),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    batch_modifier = None
    run_after_early_stop = True
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=run_after_early_stop,
                     batch_modifier=batch_modifier,
                     cuda=cuda)
    exp.run()
    return exp
def run_exp(max_recording_mins, n_recordings, sec_to_cut,
            duration_recording_mins, max_abs_val, max_min_threshold,
            max_min_expected, shrink_val, max_min_remove, batch_set_zero_val,
            batch_set_zero_test, sampling_freq, low_cut_hz, high_cut_hz,
            exp_demean, exp_standardize, moving_demean, moving_standardize,
            channel_demean, channel_standardize, divisor, n_folds, i_test_fold,
            input_time_length, final_conv_length, pool_stride, n_blocks_to_add,
            sigmoid, model_constraint, batch_size, max_epochs,
            only_return_exp):
    cuda = True

    preproc_functions = []
    preproc_functions.append(lambda data, fs: (
        data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs))
    preproc_functions.append(lambda data, fs: (data[:, :int(
        duration_recording_mins * 60 * fs)], fs))
    if max_abs_val is not None:
        preproc_functions.append(
            lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs))
    if max_min_threshold is not None:
        preproc_functions.append(lambda data, fs: (clean_jumps(
            data, 200, max_min_threshold, max_min_expected, cuda), fs))
    if max_min_remove is not None:
        window_len = 200
        preproc_functions.append(lambda data, fs: (set_jumps_to_zero(
            data,
            window_len=window_len,
            threshold=max_min_remove,
            cuda=cuda,
            clip_min_max_to_zero=True), fs))

    if shrink_val is not None:
        preproc_functions.append(lambda data, fs: (shrink_spikes(
            data,
            shrink_val,
            1,
            9,
        ), fs))

    preproc_functions.append(lambda data, fs: (resampy.resample(
        data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq))
    preproc_functions.append(lambda data, fs: (bandpass_cnt(
        data, low_cut_hz, high_cut_hz, fs, filt_order=4, axis=1), fs))

    if exp_demean:
        preproc_functions.append(lambda data, fs: (exponential_running_demean(
            data.T, factor_new=0.001, init_block_size=100).T, fs))
    if exp_standardize:
        preproc_functions.append(
            lambda data, fs: (exponential_running_standardize(
                data.T, factor_new=0.001, init_block_size=100).T, fs))
    if moving_demean:
        preproc_functions.append(lambda data, fs: (padded_moving_demean(
            data, axis=1, n_window=201), fs))
    if moving_standardize:
        preproc_functions.append(lambda data, fs: (padded_moving_standardize(
            data, axis=1, n_window=201), fs))
    if channel_demean:
        preproc_functions.append(lambda data, fs: (demean(data, axis=1), fs))
    if channel_standardize:
        preproc_functions.append(lambda data, fs:
                                 (standardize(data, axis=1), fs))
    if divisor is not None:
        preproc_functions.append(lambda data, fs: (data / divisor, fs))

    dataset = DiagnosisSet(n_recordings=n_recordings,
                           max_recording_mins=max_recording_mins,
                           preproc_functions=preproc_functions)
    if not only_return_exp:
        X, y = dataset.load()

    splitter = Splitter(
        n_folds,
        i_test_fold,
    )
    if not only_return_exp:
        train_set, valid_set, test_set = splitter.split(X, y)
        del X, y  # shouldn't be necessary, but just to make sure
    else:
        train_set = None
        valid_set = None
        test_set = None

    set_random_seeds(seed=20170629, cuda=cuda)
    if sigmoid:
        n_classes = 1
    else:
        n_classes = 2
    in_chans = 21

    net = Deep4Net(
        in_chans=in_chans,
        n_classes=n_classes,
        input_time_length=input_time_length,
        final_conv_length=final_conv_length,
        pool_time_length=pool_stride,
        pool_time_stride=pool_stride,
        n_filters_2=50,
        n_filters_3=80,
        n_filters_4=120,
    )
    model = net_with_more_layers(net, n_blocks_to_add, nn.MaxPool2d)
    if sigmoid:
        model = to_linear_plus_minus_net(model)
    optimizer = optim.Adam(model.parameters())
    to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    if sigmoid:
        loss_function = lambda preds, targets: binary_cross_entropy_with_logits(
            th.mean(preds, dim=2)[:, 1, 0], targets.type_as(preds))
    else:
        loss_function = lambda preds, targets: F.nll_loss(
            th.mean(preds, dim=2)[:, :, 0], targets)

    if model_constraint is not None:
        model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    batch_modifier = None
    if batch_set_zero_val is not None:
        batch_modifier = RemoveMinMaxDiff(batch_set_zero_val,
                                          clip_max_abs=True,
                                          set_zero=True)
    if (batch_set_zero_val is not None) and (batch_set_zero_test == True):
        iterator = ModifiedIterator(
            iterator,
            batch_modifier,
        )
        batch_modifier = None
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     batch_modifier=batch_modifier,
                     cuda=cuda)
    if not only_return_exp:
        exp.run()
    else:
        exp.dataset = dataset
        exp.splitter = splitter

    return exp
Esempio n. 12
0
def run_exp(epoches, batch_size, subject_num, model_type, cuda, single_subject,
            single_subject_num):
    # ival = [-500, 4000]
    max_increase_epochs = 160

    # Preprocessing
    X, y = loadSubjects(subject_num, single_subject, single_subject_num)
    X = X.astype(np.float32)
    y = y.astype(np.int64)
    X, y = shuffle(X, y)

    trial_length = X.shape[2]
    print("trial_length " + str(trial_length))
    print("trying to run with {} sec trials ".format((trial_length - 1) / 256))
    print("y")
    print(y)
    trainingSampleSize = int(len(X) * 0.6)
    valudationSampleSize = int(len(X) * 0.2)
    testSampleSize = int(len(X) * 0.2)
    print("INFO : Training sample size: {}".format(trainingSampleSize))
    print("INFO : Validation sample size: {}".format(valudationSampleSize))
    print("INFO : Test sample size: {}".format(testSampleSize))

    train_set = SignalAndTarget(X[:trainingSampleSize],
                                y=y[:trainingSampleSize])
    valid_set = SignalAndTarget(
        X[trainingSampleSize:(trainingSampleSize + valudationSampleSize)],
        y=y[trainingSampleSize:(trainingSampleSize + valudationSampleSize)])
    test_set = SignalAndTarget(X[(trainingSampleSize + valudationSampleSize):],
                               y=y[(trainingSampleSize +
                                    valudationSampleSize):])

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 3
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model_type == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model_type == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    elif model_type == 'eegnet':
        model = EEGNetv4(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    # th.save(model, "models\{}-cropped-singleSubjectNum{}-{}sec-{}epoches-torch_model".format(model_type, single_subject_num, ((trial_length - 1) / 256), epoches))
    return exp
Esempio n. 13
0
    def fit(
        self,
        train_X,
        train_y,
        epochs,
        batch_size,
        input_time_length=None,
        validation_data=None,
        model_constraint=None,
        remember_best_column=None,
        scheduler=None,
        log_0_epoch=True,
    ):
        """
        Fit the model using the given training data.
        
        Will set `epochs_df` variable with a pandas dataframe to the history
        of the training process.
        
        Parameters
        ----------
        train_X: ndarray
            Training input data
        train_y: 1darray
            Training labels
        epochs: int
            Number of epochs to train
        batch_size: int
        input_time_length: int, optional
            Super crop size, what temporal size is pushed forward through 
            the network, see cropped decoding tuturial.
        validation_data: (ndarray, 1darray), optional
            X and y for validation set if wanted
        model_constraint: object, optional
            You can supply :class:`.MaxNormDefaultConstraint` if wanted.
        remember_best_column: string, optional
            In case you want to do an early stopping/reset parameters to some
            "best" epoch, define here the monitored value whose minimum
            determines the best epoch.
        scheduler: 'cosine' or None, optional
            Whether to use cosine annealing (:class:`.CosineAnnealing`).
        log_0_epoch: bool
            Whether to compute the metrics once before training as well.

        Returns
        -------
        exp: 
            Underlying braindecode :class:`.Experiment`
        """
        if (not hasattr(self, "compiled")) or (not self.compiled):
            raise ValueError(
                "Compile the model first by calling model.compile(loss, optimizer, metrics)"
            )

        if self.cropped and input_time_length is None:
            raise ValueError(
                "In cropped mode, need to specify input_time_length,"
                "which is the number of timesteps that will be pushed through"
                "the network in a single pass.")

        train_X = _ensure_float32(train_X)
        if self.cropped:
            self.network.eval()
            test_input = np_to_var(
                np.ones(
                    (1, train_X[0].shape[0], input_time_length) +
                    train_X[0].shape[2:],
                    dtype=np.float32,
                ))
            while len(test_input.size()) < 4:
                test_input = test_input.unsqueeze(-1)
            if self.is_cuda:
                test_input = test_input.cuda()
            out = self.network(test_input)
            n_preds_per_input = out.cpu().data.numpy().shape[2]
            self.iterator = CropsFromTrialsIterator(
                batch_size=batch_size,
                input_time_length=input_time_length,
                n_preds_per_input=n_preds_per_input,
                seed=self.seed_rng.randint(0,
                                           np.iinfo(np.int32).max - 1),
            )
        else:
            self.iterator = BalancedBatchSizeIterator(
                batch_size=batch_size,
                seed=self.seed_rng.randint(0,
                                           np.iinfo(np.int32).max - 1),
            )
        if log_0_epoch:
            stop_criterion = MaxEpochs(epochs)
        else:
            stop_criterion = MaxEpochs(epochs - 1)
        train_set = SignalAndTarget(train_X, train_y)
        optimizer = self.optimizer
        if scheduler is not None:
            assert (scheduler == "cosine"
                    ), "Supply either 'cosine' or None as scheduler."
            n_updates_per_epoch = sum([
                1 for _ in self.iterator.get_batches(train_set, shuffle=True)
            ])
            n_updates_per_period = n_updates_per_epoch * epochs
            if scheduler == "cosine":
                scheduler = CosineAnnealing(n_updates_per_period)
            schedule_weight_decay = False
            if optimizer.__class__.__name__ == "AdamW":
                schedule_weight_decay = True
            optimizer = ScheduledOptimizer(
                scheduler,
                self.optimizer,
                schedule_weight_decay=schedule_weight_decay,
            )
        loss_function = self.loss
        if self.cropped:
            loss_function = lambda outputs, targets: self.loss(
                th.mean(outputs, dim=2), targets)
        if validation_data is not None:
            valid_X = _ensure_float32(validation_data[0])
            valid_y = validation_data[1]
            valid_set = SignalAndTarget(valid_X, valid_y)
        else:
            valid_set = None
        test_set = None
        self.monitors = [LossMonitor()]
        if self.cropped:
            self.monitors.append(
                CroppedTrialMisclassMonitor(input_time_length))
        else:
            self.monitors.append(MisclassMonitor())
        if self.extra_monitors is not None:
            self.monitors.extend(self.extra_monitors)
        self.monitors.append(RuntimeMonitor())
        exp = Experiment(
            self.network,
            train_set,
            valid_set,
            test_set,
            iterator=self.iterator,
            loss_function=loss_function,
            optimizer=optimizer,
            model_constraint=model_constraint,
            monitors=self.monitors,
            stop_criterion=stop_criterion,
            remember_best_column=remember_best_column,
            run_after_early_stop=False,
            cuda=self.is_cuda,
            log_0_epoch=log_0_epoch,
            do_early_stop=(remember_best_column is not None),
        )
        exp.run()
        self.epochs_df = exp.epochs_df
        return exp
Esempio n. 14
0
def test_experiment_class():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [mne.io.read_raw_edf(path, preload=True, stim_channel='auto',
                                 verbose='WARNING')
             for path in physionet_paths]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events, _ = mne.events_from_annotations(raw)

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1,
                         proj=False, picks=eeg_channel_inds,
                         baseline=None, preload=True)
    import numpy as np
    from braindecode.datautil.signal_target import SignalAndTarget
    from braindecode.datautil.splitters import split_into_two_sets
    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)
    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds
    from braindecode.models.util import to_dense_prediction_model

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    input_time_length = 450
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=12).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())

    from braindecode.torch_ext.util import np_to_var
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    print("{:d} predictions per input/trial".format(n_preds_per_input))

    from braindecode.experiments.experiment import Experiment
    from braindecode.datautil.iterators import CropsFromTrialsIterator
    from braindecode.experiments.monitors import RuntimeMonitor, LossMonitor, \
        CroppedTrialMisclassMonitor, MisclassMonitor
    from braindecode.experiments.stopcriteria import MaxEpochs
    import torch.nn.functional as F
    import torch as th
    from braindecode.torch_ext.modules import Expression
    # Iterator is used to iterate over datasets both for training
    # and evaluation
    iterator = CropsFromTrialsIterator(batch_size=32,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    # Loss function takes predictions as they come out of the network and the targets
    # and returns a loss
    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    # Could be used to apply some constraint on the models, then should be object
    # with apply method that accepts a module
    model_constraint = None
    # Monitors log the training progress
    monitors = [LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'),
                CroppedTrialMisclassMonitor(input_time_length),
                RuntimeMonitor(), ]
    # Stop criterion determines when the first stop happens
    stop_criterion = MaxEpochs(4)
    exp = Experiment(model, train_set, valid_set, test_set, iterator,
                     loss_function, optimizer, model_constraint,
                     monitors, stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True, batch_modifier=None, cuda=cuda)

    # need to setup python logging before to be able to see anything
    import logging
    import sys
    logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s',
                        level=logging.DEBUG, stream=sys.stdout)
    exp.run()

    import pandas as pd
    from io import StringIO
    compare_df = pd.read_csv(StringIO(
        'train_loss,valid_loss,test_loss,train_sample_misclass,valid_sample_misclass,'
        'test_sample_misclass,train_misclass,valid_misclass,test_misclass\n'
        '14.167170524597168,13.910758018493652,15.945781707763672,0.5,0.5,'
        '0.5333333333333333,0.5,0.5,0.5333333333333333\n'
        '1.1735659837722778,1.4342904090881348,1.8664429187774658,0.4629567736185384,'
        '0.5120320855614973,0.5336007130124778,0.5,0.5,0.5333333333333333\n'
        '1.3168460130691528,1.60431969165802,1.9181344509124756,0.49298128342245995,'
        '0.5109180035650625,0.531729055258467,0.5,0.5,0.5333333333333333\n'
        '0.8465543389320374,1.280307412147522,1.439755916595459,0.4413435828877005,'
        '0.5461229946524064,0.5283422459893048,0.47916666666666663,0.5,'
        '0.5333333333333333\n0.6977059841156006,1.1762590408325195,1.2779350280761719,'
        '0.40290775401069523,0.588903743315508,0.5307486631016043,0.5,0.5,0.5\n'
        '0.7934166193008423,1.1762590408325195,1.2779350280761719,0.4401069518716577,'
        '0.588903743315508,0.5307486631016043,0.5,0.5,0.5\n0.5982189178466797,'
        '0.8581563830375671,0.9598925113677979,0.32032085561497325,0.47660427807486627,'
        '0.4672905525846702,0.31666666666666665,0.5,0.4666666666666667\n0.5044312477111816,'
        '0.7133197784423828,0.8164243102073669,0.2591354723707665,0.45699643493761144,'
        '0.4393048128342246,0.16666666666666663,0.41666666666666663,0.43333333333333335\n'
        '0.4815250039100647,0.6736412644386292,0.8016976714134216,0.23413547237076648,'
        '0.39505347593582885,0.42932263814616756,0.15000000000000002,0.41666666666666663,0.5\n'))

    for col in compare_df:
        np.testing.assert_allclose(np.array(compare_df[col]),
                                   exp.epochs_df[col],
                                   rtol=1e-3, atol=1e-4)
Esempio n. 15
0
def run_experiment(train_set, valid_set, test_set, model_name, optimizer_name,
                   init_lr, scheduler_name, use_norm_constraint, weight_decay,
                   schedule_weight_decay, restarts, max_epochs,
                   max_increase_epochs, np_th_seed):
    set_random_seeds(np_th_seed, cuda=True)
    #torch.backends.cudnn.benchmark = True# sometimes crashes?
    if valid_set is not None:
        assert max_increase_epochs is not None
    assert (max_epochs is None) != (restarts is None)
    if max_epochs is None:
        max_epochs = np.sum(restarts)
    n_classes = int(np.max(train_set.y) + 1)
    n_chans = int(train_set.X.shape[1])
    input_time_length = 1000
    if model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()
    elif model_name == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()
    elif model_name in [
            'resnet-he-uniform', 'resnet-he-normal', 'resnet-xavier-normal',
            'resnet-xavier-uniform'
    ]:
        init_name = model_name.lstrip('resnet-')
        from torch.nn import init
        init_fn = {
            'he-uniform': lambda w: init.kaiming_uniform(w, a=0),
            'he-normal': lambda w: init.kaiming_normal(w, a=0),
            'xavier-uniform': lambda w: init.xavier_uniform(w, gain=1),
            'xavier-normal': lambda w: init.xavier_normal(w, gain=1)
        }[init_name]
        model = EEGResNet(in_chans=n_chans,
                          n_classes=n_classes,
                          input_time_length=input_time_length,
                          final_pool_length=10,
                          n_first_filters=48,
                          conv_weight_init_fn=init_fn).create_network()
    else:
        raise ValueError("Unknown model name {:s}".format(model_name))
    if 'resnet' not in model_name:
        to_dense_prediction_model(model)
    model.cuda()
    model.eval()

    out = model(np_to_var(train_set.X[:1, :, :input_time_length, None]).cuda())

    n_preds_per_input = out.cpu().data.numpy().shape[2]

    if optimizer_name == 'adam':
        optimizer = optim.Adam(model.parameters(),
                               weight_decay=weight_decay,
                               lr=init_lr)
    elif optimizer_name == 'adamw':
        optimizer = AdamW(model.parameters(),
                          weight_decay=weight_decay,
                          lr=init_lr)

    iterator = CropsFromTrialsIterator(batch_size=60,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input,
                                       seed=np_th_seed)

    if scheduler_name is not None:
        assert schedule_weight_decay == (optimizer_name == 'adamw')
        if scheduler_name == 'cosine':
            n_updates_per_epoch = sum(
                [1 for _ in iterator.get_batches(train_set, shuffle=True)])
            if restarts is None:
                n_updates_per_period = n_updates_per_epoch * max_epochs
            else:
                n_updates_per_period = np.array(restarts) * n_updates_per_epoch
            scheduler = CosineAnnealing(n_updates_per_period)
            optimizer = ScheduledOptimizer(
                scheduler,
                optimizer,
                schedule_weight_decay=schedule_weight_decay)
        elif scheduler_name == 'cut_cosine':
            # TODO: integrate with if clause before, now just separate
            # to avoid messing with code
            n_updates_per_epoch = sum(
                [1 for _ in iterator.get_batches(train_set, shuffle=True)])
            if restarts is None:
                n_updates_per_period = n_updates_per_epoch * max_epochs
            else:
                n_updates_per_period = np.array(restarts) * n_updates_per_epoch
            scheduler = CutCosineAnnealing(n_updates_per_period)
            optimizer = ScheduledOptimizer(
                scheduler,
                optimizer,
                schedule_weight_decay=schedule_weight_decay)
        else:
            raise ValueError("Unknown scheduler")
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    if use_norm_constraint:
        model_constraint = MaxNormDefaultConstraint()
    else:
        model_constraint = None
    # change here this cell
    loss_function = lambda preds, targets: F.nll_loss(th.mean(preds, dim=2),
                                                      targets)

    if valid_set is not None:
        run_after_early_stop = True
        do_early_stop = True
        remember_best_column = 'valid_misclass'
        stop_criterion = Or([
            MaxEpochs(max_epochs),
            NoDecrease('valid_misclass', max_increase_epochs)
        ])
    else:
        run_after_early_stop = False
        do_early_stop = False
        remember_best_column = None
        stop_criterion = MaxEpochs(max_epochs)

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column=remember_best_column,
                     run_after_early_stop=run_after_early_stop,
                     cuda=True,
                     do_early_stop=do_early_stop)
    exp.run()
    return exp
from braindecode.datautil.signal_target import SignalAndTarget
from sklearn.model_selection import StratifiedKFold
from braindecode.experiments.stopcriteria import MaxEpochs, NoDecrease, Or
from braindecode.experiments.monitors import LossMonitor, MisclassMonitor, RuntimeMonitor
from braindecode.torch_ext.constraints import MaxNormDefaultConstraint
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)

hyp_params = dict(activation=["elu", "relu"], lr=[0.001], epochs=[1, 2])
parameters = dict(
    best_loss=100.0,
    batch_size=64,
    monitors=[LossMonitor(),
              MisclassMonitor(),
              RuntimeMonitor()],
    model_constraint=MaxNormDefaultConstraint(),
    max_increase_epochs=1,
    cuda=False)


@timer
def trainNestedCV(direct, subject, session, filename, hyp_params, parameters):

    subj = load_subject(direct, subject, 1, filename)["subject"]
    #
    # data = subj.data3D.astype(np.float32) # convert data to 3d for deep learning
    # labels = subj.labels.astype(np.int64)
    # labels[:] = [x - 1 for x in labels]
    data, labels = format_data('words', subject, 4096)
Esempio n. 17
0
def test_experiment_class():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [
        mne.io.read_raw_edf(path,
                            preload=True,
                            stim_channel='auto',
                            verbose='WARNING') for path in physionet_paths
    ]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info,
                                      meg=False,
                                      eeg=True,
                                      stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw,
                         events,
                         dict(hands=2, feet=3),
                         tmin=1,
                         tmax=4.1,
                         proj=False,
                         picks=eeg_channel_inds,
                         baseline=None,
                         preload=True)
    import numpy as np
    from braindecode.datautil.signal_target import SignalAndTarget
    from braindecode.datautil.splitters import split_into_two_sets
    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)
    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds
    from braindecode.models.util import to_dense_prediction_model

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    input_time_length = 450
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=12).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())

    from braindecode.torch_ext.util import np_to_var
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    print("{:d} predictions per input/trial".format(n_preds_per_input))

    from braindecode.experiments.experiment import Experiment
    from braindecode.datautil.iterators import CropsFromTrialsIterator
    from braindecode.experiments.monitors import RuntimeMonitor, LossMonitor, \
        CroppedTrialMisclassMonitor, MisclassMonitor
    from braindecode.experiments.stopcriteria import MaxEpochs
    import torch.nn.functional as F
    import torch as th
    from braindecode.torch_ext.modules import Expression
    # Iterator is used to iterate over datasets both for training
    # and evaluation
    iterator = CropsFromTrialsIterator(batch_size=32,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    # Loss function takes predictions as they come out of the network and the targets
    # and returns a loss
    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    # Could be used to apply some constraint on the models, then should be object
    # with apply method that accepts a module
    model_constraint = None
    # Monitors log the training progress
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length),
        RuntimeMonitor(),
    ]
    # Stop criterion determines when the first stop happens
    stop_criterion = MaxEpochs(4)
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     batch_modifier=None,
                     cuda=cuda)

    # need to setup python logging before to be able to see anything
    import logging
    import sys
    logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s',
                        level=logging.DEBUG,
                        stream=sys.stdout)
    exp.run()

    import pandas as pd
    from io import StringIO
    compare_df = pd.read_csv(
        StringIO(
            u'train_loss,valid_loss,test_loss,train_sample_misclass,valid_sample_misclass,'
            'test_sample_misclass,train_misclass,valid_misclass,test_misclass\n'
            '0,0.8692976435025532,0.7483791708946228,0.6975634694099426,'
            '0.5389371657754011,0.47103386809269165,0.4425133689839572,'
            '0.6041666666666667,0.5,0.4\n1,2.3362590074539185,'
            '2.317707061767578,2.1407743096351624,0.4827874331550802,'
            '0.5,0.4666666666666667,0.5,0.5,0.4666666666666667\n'
            '2,0.5981490015983582,0.785034716129303,0.7005959153175354,'
            '0.3391822638146168,0.47994652406417115,0.41996434937611404,'
            '0.22916666666666663,0.41666666666666663,0.43333333333333335\n'
            '3,0.6355261653661728,0.785034716129303,'
            '0.7005959153175354,0.3673351158645276,0.47994652406417115,'
            '0.41996434937611404,0.2666666666666667,0.41666666666666663,'
            '0.43333333333333335\n4,0.625280424952507,'
            '0.802731990814209,0.7048938572406769,0.3367201426024955,'
            '0.43137254901960786,0.4229946524064171,0.3666666666666667,'
            '0.5833333333333333,0.33333333333333337\n'))

    for col in compare_df:
        np.testing.assert_allclose(np.array(compare_df[col]),
                                   exp.epochs_df[col],
                                   rtol=1e-4,
                                   atol=1e-5)
Esempio n. 18
0
logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s',
                     level=logging.INFO, stream=sys.stdout)


WINDOW_LEN = 200
OVERLAP = 150
windows = windows_index(500,WINDOW_LEN,OVERLAP,250)

hyp_params = dict(window=windows[:2],
				  activation=["leaky_relu"],
                  structure= ["shallow"])


parameters = dict(best_loss = 100.0,
                  batch_size = 32,
                  monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()],
                  model_constraint = MaxNormDefaultConstraint(),
                  max_increase_epochs = 0,
                  cuda = True,
                  epochs=1,
                  learning_rate_scheduler=StepLR,
                  lr_step=20, lr_gamma=0.9)



EEGSubNet_params = dict(n_filters_time=40, filter_time_length=5, n_filters_spat=40, n_filters_2=20, filter_length_2=20,
                        pool_time_length_1=5, pool_time_stride_1=2, pool_length_2=5, pool_stride_2=3, final_conv_length='auto',
                        conv_nonlin=th.nn.functional.leaky_relu, pool_mode='mean', pool_nonlin=safe_log,
                        split_first_layer=True, batch_norm=True, batch_norm_alpha=0.2,
                        drop_prob=0.1)
Esempio n. 19
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    max_epochs = 1600
    max_increase_epochs = 160
    batch_size = 60
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = 0.2

    train_filename = "A{:02d}T.gdf".format(subject_id)
    test_filename = "A{:02d}E.gdf".format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace(".gdf", ".mat")
    test_label_filepath = test_filepath.replace(".gdf", ".mat")

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath
    )
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath
    )
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ["EOG-left", "EOG-central", "EOG-right"]
    )
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a,
            low_cut_hz,
            high_cut_hz,
            train_cnt.info["sfreq"],
            filt_order=3,
            axis=1,
        ),
        train_cnt,
    )
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T,
            factor_new=factor_new,
            init_block_size=init_block_size,
            eps=1e-4,
        ).T,
        train_cnt,
    )

    test_cnt = test_cnt.drop_channels(["EOG-left", "EOG-central", "EOG-right"])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a,
            low_cut_hz,
            high_cut_hz,
            test_cnt.info["sfreq"],
            filt_order=3,
            axis=1,
        ),
        test_cnt,
    )
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T,
            factor_new=factor_new,
            init_block_size=init_block_size,
            eps=1e-4,
        ).T,
        test_cnt,
    )

    marker_def = OrderedDict(
        [
            ("Left Hand", [1]),
            ("Right Hand", [2]),
            ("Foot", [3]),
            ("Tongue", [4]),
        ]
    )

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(
        train_set, first_set_fraction=1 - valid_set_fraction
    )

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == "shallow":
        model = ShallowFBCSPNet(
            n_chans,
            n_classes,
            input_time_length=input_time_length,
            final_conv_length="auto",
        ).create_network()
    elif model == "deep":
        model = Deep4Net(
            n_chans,
            n_classes,
            input_time_length=input_time_length,
            final_conv_length="auto",
        ).create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or(
        [
            MaxEpochs(max_epochs),
            NoDecrease("valid_misclass", max_increase_epochs),
        ]
    )

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(
        model,
        train_set,
        valid_set,
        test_set,
        iterator=iterator,
        loss_function=F.nll_loss,
        optimizer=optimizer,
        model_constraint=model_constraint,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_column="valid_misclass",
        run_after_early_stop=True,
        cuda=cuda,
    )
    exp.run()
    return exp
Esempio n. 20
0
def build_exp(model_name, cuda, data, batch_size, max_epochs, max_increase_epochs):

    log.info("==============================")
    log.info("Loading Data...")
    log.info("==============================")

    train_set = data.train_set
    valid_set = data.validation_set
    test_set = data.test_set

    log.info("==============================")
    log.info("Setting Up Model...")
    log.info("==============================")
    set_random_seeds(seed=20190706, cuda=cuda)
    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model_name == "shallow":
        model = NewShallowNet(
            n_chans, n_classes, input_time_length, final_conv_length="auto"
        )
        # model = ShallowFBCSPNet(
        #     n_chans,
        #     n_classes,
        #     input_time_length=input_time_length,
        #     final_conv_length="auto",
        # ).create_network()
    elif model_name == "deep":
        model = NewDeep4Net(n_chans, n_classes, input_time_length, "auto")
        # model = Deep4Net(
        #     n_chans,
        #     n_classes,
        #     input_time_length=input_time_length,
        #     final_conv_length="auto",
        # ).create_network()
    elif model_name == "eegnet":
        # model = EEGNet(n_chans, n_classes,
        #                input_time_length=input_time_length)
        # model = EEGNetv4(n_chans, n_classes,
        #                  input_time_length=input_time_length).create_network()
        model = NewEEGNet(n_chans, n_classes, input_time_length=input_time_length)

    if cuda:
        model.cuda()

    log.info("==============================")
    log.info("Logging Model Architecture:")
    log.info("==============================")
    log.info("Model: \n{:s}".format(str(model)))

    log.info("==============================")
    log.info("Building Experiment:")
    log.info("==============================")
    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or(
        [MaxEpochs(max_epochs), NoDecrease("valid_misclass", max_increase_epochs)]
    )

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(
        model,
        train_set,
        valid_set,
        test_set,
        iterator=iterator,
        loss_function=F.nll_loss,
        optimizer=optimizer,
        model_constraint=model_constraint,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_column="valid_misclass",
        run_after_early_stop=True,
        cuda=cuda,
    )
    return exp
Esempio n. 21
0
def run_exp_on_high_gamma_dataset(train_filename, test_filename, low_cut_hz,
                                  model_name, max_epochs, max_increase_epochs,
                                  np_th_seed, debug):
    train_set, valid_set, test_set = load_train_valid_test(
        train_filename=train_filename,
        test_filename=test_filename,
        low_cut_hz=low_cut_hz,
        debug=debug)
    if debug:
        max_epochs = 4

    set_random_seeds(np_th_seed, cuda=True)
    #torch.backends.cudnn.benchmark = True# sometimes crashes?
    n_classes = int(np.max(train_set.y) + 1)
    n_chans = int(train_set.X.shape[1])
    input_time_length = 1000
    if model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()
    elif model_name == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()

    to_dense_prediction_model(model)
    model.cuda()
    model.eval()

    out = model(np_to_var(train_set.X[:1, :, :input_time_length, None]).cuda())

    n_preds_per_input = out.cpu().data.numpy().shape[2]
    optimizer = optim.Adam(model.parameters(), weight_decay=0, lr=1e-3)

    iterator = CropsFromTrialsIterator(batch_size=60,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input,
                                       seed=np_th_seed)

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(th.mean(preds, dim=2),
                                                      targets)

    run_after_early_stop = True
    do_early_stop = True
    remember_best_column = 'valid_misclass'
    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column=remember_best_column,
                     run_after_early_stop=run_after_early_stop,
                     cuda=True,
                     do_early_stop=do_early_stop)
    exp.run()
    return exp
def run_exp(data_folder, session_id, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    max_epochs = 1600
    max_increase_epochs = 160
    batch_size = 10
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = .2
    ''' # BCIcompetition
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()
    '''

    # GIGAscience
    filename = 'sess{:02d}_subj{:02d}_EEG_MI.mat'.format(
        session_id, subject_id)
    filepath = os.path.join(data_folder, filename)
    train_variable = 'EEG_MI_train'
    test_variable = 'EEG_MI_test'

    train_loader = GIGAscience(filepath, train_variable)
    test_loader = GIGAscience(filepath, test_variable)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing
    ''' channel
    ['Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FC5', 'FC1', 'FC2', 'FC6', 'T7', 'C3', 'Cz', 'C4', 'T8', 'TP9', 'CP5',
     'CP1', 'CP2', 'CP6', 'TP10', 'P7', 'P3', 'Pz', 'P4', 'P8', 'PO9', 'O1', 'Oz', 'O2', 'PO10', 'FC3', 'FC4', 'C5',
     'C1', 'C2', 'C6', 'CP3', 'CPz', 'CP4', 'P1', 'P2', 'POz', 'FT9', 'FTT9h', 'TTP7h', 'TP7', 'TPP9h', 'FT10',
     'FTT10h', 'TPP8h', 'TP8', 'TPP10h', 'F9', 'F10', 'AF7', 'AF3', 'AF4', 'AF8', 'PO3', 'PO4']
    '''

    train_cnt = train_cnt.pick_channels([
        'FC5', 'FC3', 'FC1', 'Fz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz',
        'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Pz'
    ])
    train_cnt, train_cnt.info['events'] = train_cnt.copy().resample(
        250, npad='auto', events=train_cnt.info['events'])

    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.pick_channels([
        'FC5', 'FC3', 'FC1', 'Fz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz',
        'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Pz'
    ])
    test_cnt, test_cnt.info['events'] = test_cnt.copy().resample(
        250, npad='auto', events=test_cnt.info['events'])

    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Right Hand', [1]), ('Left Hand', [2])])

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=1 -
                                               valid_set_fraction)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 2
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
Esempio n. 23
0
# and evaluation
iterator = CropsFromTrialsIterator(batch_size=32,
                                   input_time_length=input_time_length,
                                   n_preds_per_input=n_preds_per_input)

# Loss function takes predictions as they come out of the network and the targets
# and returns a loss
loss_function = lambda preds, targets: log_categorical_crossentropy(
    preds, targets)
# Could be used to apply some constraint on the models, then should be object
# with apply method that accepts a module
model_constraint = None
# Monitors log the training progress
monitors = [
    LossMonitor(),
    MisclassMonitor(col_suffix='misclass'),
    SeizureMonitor(input_time_length),
    RuntimeMonitor(),
]
# Stop criterion determines when the first stop happens
stop_criterion = MaxEpochs(5)
exp = Experiment(model,
                 train_set,
                 valid_set,
                 test_set,
                 iterator,
                 loss_function,
                 optimizer,
                 model_constraint,
                 monitors,
                 stop_criterion,
Esempio n. 24
0
def run_exp(max_recording_mins,
            n_recordings,
            sec_to_cut_at_start,
            sec_to_cut_at_end,
            duration_recording_mins,
            max_abs_val,
            clip_before_resample,
            sampling_freq,
            divisor,
            n_folds,
            i_test_fold,
            shuffle,
            merge_train_valid,
            model,
            input_time_length,
            optimizer,
            learning_rate,
            weight_decay,
            scheduler,
            model_constraint,
            batch_size,
            max_epochs,
            only_return_exp,
            time_cut_off_sec,
            start_time,
            test_on_eval,
            test_recording_mins,
            sensor_types,
            log_dir,
            np_th_seed,
            cuda=True):
    import torch.backends.cudnn as cudnn
    cudnn.benchmark = True
    if optimizer == 'adam':
        assert merge_train_valid == False
    else:
        assert optimizer == 'adamw'
        assert merge_train_valid == True

    preproc_functions = create_preproc_functions(
        sec_to_cut_at_start=sec_to_cut_at_start,
        sec_to_cut_at_end=sec_to_cut_at_end,
        duration_recording_mins=duration_recording_mins,
        max_abs_val=max_abs_val,
        clip_before_resample=clip_before_resample,
        sampling_freq=sampling_freq,
        divisor=divisor)

    dataset = DiagnosisSet(n_recordings=n_recordings,
                           max_recording_mins=max_recording_mins,
                           preproc_functions=preproc_functions,
                           train_or_eval='train',
                           sensor_types=sensor_types)

    if test_on_eval:
        if test_recording_mins is None:
            test_recording_mins = duration_recording_mins

        test_preproc_functions = create_preproc_functions(
            sec_to_cut_at_start=sec_to_cut_at_start,
            sec_to_cut_at_end=sec_to_cut_at_end,
            duration_recording_mins=test_recording_mins,
            max_abs_val=max_abs_val,
            clip_before_resample=clip_before_resample,
            sampling_freq=sampling_freq,
            divisor=divisor)
        test_dataset = DiagnosisSet(n_recordings=n_recordings,
                                    max_recording_mins=None,
                                    preproc_functions=test_preproc_functions,
                                    train_or_eval='eval',
                                    sensor_types=sensor_types)
    if not only_return_exp:
        X, y = dataset.load()
        max_shape = np.max([list(x.shape) for x in X], axis=0)
        assert max_shape[1] == int(duration_recording_mins * sampling_freq *
                                   60)
        if test_on_eval:
            test_X, test_y = test_dataset.load()
            max_shape = np.max([list(x.shape) for x in test_X], axis=0)
            assert max_shape[1] == int(test_recording_mins * sampling_freq *
                                       60)
    if not test_on_eval:
        splitter = TrainValidTestSplitter(n_folds,
                                          i_test_fold,
                                          shuffle=shuffle)
    else:
        splitter = TrainValidSplitter(n_folds,
                                      i_valid_fold=i_test_fold,
                                      shuffle=shuffle)
    if not only_return_exp:
        if not test_on_eval:
            train_set, valid_set, test_set = splitter.split(X, y)
        else:

            train_set, valid_set = splitter.split(X, y)
            test_set = SignalAndTarget(test_X, test_y)
            del test_X, test_y
        del X, y  # shouldn't be necessary, but just to make sure
        if merge_train_valid:
            train_set = concatenate_sets([train_set, valid_set])
            # just reduce valid for faster computations
            valid_set.X = valid_set.X[:8]
            valid_set.y = valid_set.y[:8]
            # np.save('/data/schirrmr/schirrmr/auto-diag/lukasrepr/compare/mne-0-16-2/train_X.npy', train_set.X)
            # np.save('/data/schirrmr/schirrmr/auto-diag/lukasrepr/compare/mne-0-16-2/train_y.npy', train_set.y)
            # np.save('/data/schirrmr/schirrmr/auto-diag/lukasrepr/compare/mne-0-16-2/valid_X.npy', valid_set.X)
            # np.save('/data/schirrmr/schirrmr/auto-diag/lukasrepr/compare/mne-0-16-2/valid_y.npy', valid_set.y)
            # np.save('/data/schirrmr/schirrmr/auto-diag/lukasrepr/compare/mne-0-16-2/test_X.npy', test_set.X)
            # np.save('/data/schirrmr/schirrmr/auto-diag/lukasrepr/compare/mne-0-16-2/test_y.npy', test_set.y)
    else:
        train_set = None
        valid_set = None
        test_set = None

    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    model.eval()
    in_chans = 21
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input,
                                       seed=np_th_seed)
    assert optimizer in ['adam', 'adamw'], ("Expect optimizer to be either "
                                            "adam or adamw")
    schedule_weight_decay = optimizer == 'adamw'
    if optimizer == 'adam':
        optim_class = optim.Adam
        assert schedule_weight_decay == False
        assert merge_train_valid == False
    else:
        optim_class = AdamW
        assert schedule_weight_decay == True
        assert merge_train_valid == True

    optimizer = optim_class(model.parameters(),
                            lr=learning_rate,
                            weight_decay=weight_decay)
    if scheduler is not None:
        assert scheduler == 'cosine'
        n_updates_per_epoch = sum(
            [1 for _ in iterator.get_batches(train_set, shuffle=True)])
        # Adapt if you have a different number of epochs
        n_updates_per_period = n_updates_per_epoch * max_epochs
        scheduler = CosineAnnealing(n_updates_per_period)
        optimizer = ScheduledOptimizer(
            scheduler, optimizer, schedule_weight_decay=schedule_weight_decay)
    loss_function = nll_loss_on_mean

    if model_constraint is not None:
        assert model_constraint == 'defaultnorm'
        model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedDiagnosisMonitor(input_time_length, n_preds_per_input),
        RuntimeMonitor(),
    ]

    stop_criterion = MaxEpochs(max_epochs)
    loggers = [Printer(), TensorboardWriter(log_dir)]
    batch_modifier = None
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     batch_modifier=batch_modifier,
                     cuda=cuda,
                     loggers=loggers)

    if not only_return_exp:
        # Until first stop
        exp.setup_training()
        exp.monitor_epoch(exp.datasets)
        exp.log_epoch()
        exp.rememberer.remember_epoch(exp.epochs_df, exp.model, exp.optimizer)

        exp.iterator.reset_rng()
        while not exp.stop_criterion.should_stop(exp.epochs_df):
            if (time.time() - start_time) > time_cut_off_sec:
                log.info(
                    "Ran out of time after {:.2f} sec.".format(time.time() -
                                                               start_time))
                return exp
            log.info("Still in time after {:.2f} sec.".format(time.time() -
                                                              start_time))
            exp.run_one_epoch(exp.datasets, remember_best=True)
        if (time.time() - start_time) > time_cut_off_sec:
            log.info("Ran out of time after {:.2f} sec.".format(time.time() -
                                                                start_time))
            return exp
        if not merge_train_valid:
            exp.setup_after_stop_training()
            # Run until second stop
            datasets = exp.datasets
            datasets['train'] = concatenate_sets(
                [datasets['train'], datasets['valid']])
            exp.monitor_epoch(datasets)
            exp.log_epoch()

            exp.iterator.reset_rng()
            while not exp.stop_criterion.should_stop(exp.epochs_df):
                if (time.time() - start_time) > time_cut_off_sec:
                    log.info("Ran out of time after {:.2f} sec.".format(
                        time.time() - start_time))
                    return exp
                log.info("Still in time after {:.2f} sec.".format(time.time() -
                                                                  start_time))
                exp.run_one_epoch(datasets, remember_best=False)

    else:
        exp.dataset = dataset
        exp.splitter = splitter
    if test_on_eval:
        exp.test_dataset = test_dataset

    return exp
Esempio n. 25
0
def run_exp(max_epochs, only_return_exp):
    from collections import OrderedDict
    filenames = [
        'data/robot-hall/NiRiNBD6.ds_1-1_500Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD8.ds_1-1_500Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD9.ds_1-1_500Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD10.ds_1-1_500Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD12_cursor_250Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD13_cursorS000R01_onlyFullRuns_250Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD14_cursor_250Hz.BBCI.mat',
        'data/robot-hall/NiRiNBD15_cursor_250Hz.BBCI.mat'
    ]
    sensor_names = [
        'Fp1', 'Fpz', 'Fp2', 'AF7', 'AF3', 'AF4', 'AF8', 'F7', 'F5', 'F3',
        'F1', 'Fz', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FC5', 'FC3', 'FC1', 'FCz',
        'FC2', 'FC4', 'FC6', 'FT8', 'M1', 'T7', 'C5', 'C3', 'C1', 'Cz', 'C2',
        'C4', 'C6', 'T8', 'M2', 'TP7', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2',
        'CP4', 'CP6', 'TP8', 'P7', 'P5', 'P3', 'P1', 'Pz', 'P2', 'P4', 'P6',
        'P8', 'PO7', 'PO5', 'PO3', 'POz', 'PO4', 'PO6', 'PO8', 'O1', 'Oz', 'O2'
    ]
    name_to_start_codes = OrderedDict([('Right Hand', [1]), ('Feet', [2]),
                                       ('Rotation', [3]), ('Words', [4])])
    name_to_stop_codes = OrderedDict([('Right Hand', [10]), ('Feet', [20]),
                                      ('Rotation', [30]), ('Words', [40])])

    trial_ival = [500, 0]
    min_break_length_ms = 6000
    max_break_length_ms = 8000
    break_ival = [1000, -500]

    input_time_length = 700

    filename_to_extra_args = {
        'data/robot-hall/NiRiNBD12_cursor_250Hz.BBCI.mat':
        dict(
            name_to_start_codes=OrderedDict([('Right Hand', [1]),
                                             ('Feet', [2]), ('Rotation', [3]),
                                             ('Words', [4]), ('Rest', [5])]),
            name_to_stop_codes=OrderedDict([('Right Hand', [10]),
                                            ('Feet', [20]), ('Rotation', [30]),
                                            ('Words', [40]), ('Rest', [50])]),
            min_break_length_ms=3700,
            max_break_length_ms=3900,
        ),
        'data/robot-hall/NiRiNBD13_cursorS000R01_onlyFullRuns_250Hz.BBCI.mat':
        dict(
            name_to_start_codes=OrderedDict([('Right Hand', [1]),
                                             ('Feet', [2]), ('Rotation', [3]),
                                             ('Words', [4]), ('Rest', [5])]),
            name_to_stop_codes=OrderedDict([('Right Hand', [10]),
                                            ('Feet', [20]), ('Rotation', [30]),
                                            ('Words', [40]), ('Rest', [50])]),
            min_break_length_ms=3700,
            max_break_length_ms=3900,
        ),
        'data/robot-hall/NiRiNBD14_cursor_250Hz.BBCI.mat':
        dict(
            name_to_start_codes=OrderedDict([('Right Hand', [1]),
                                             ('Feet', [2]), ('Rotation', [3]),
                                             ('Words', [4]), ('Rest', [5])]),
            name_to_stop_codes=OrderedDict([('Right Hand', [10]),
                                            ('Feet', [20]), ('Rotation', [30]),
                                            ('Words', [40]), ('Rest', [50])]),
            min_break_length_ms=3700,
            max_break_length_ms=3900,
        ),
        'data/robot-hall/NiRiNBD15_cursor_250Hz.BBCI.mat':
        dict(
            name_to_start_codes=OrderedDict([('Right Hand', [1]),
                                             ('Feet', [2]), ('Rotation', [3]),
                                             ('Words', [4]), ('Rest', [5])]),
            name_to_stop_codes=OrderedDict([('Right Hand', [10]),
                                            ('Feet', [20]), ('Rotation', [30]),
                                            ('Words', [40]), ('Rest', [50])]),
            min_break_length_ms=3700,
            max_break_length_ms=3900,
        ),
    }
    from braindecode.datautil.trial_segment import \
        create_signal_target_with_breaks_from_mne
    from copy import deepcopy

    def load_data(filenames, sensor_names, name_to_start_codes,
                  name_to_stop_codes, trial_ival, break_ival,
                  min_break_length_ms, max_break_length_ms, input_time_length,
                  filename_to_extra_args):
        all_sets = []
        original_args = locals()
        for filename in filenames:
            kwargs = deepcopy(original_args)
            if filename in filename_to_extra_args:
                kwargs.update(filename_to_extra_args[filename])
            log.info("Loading {:s}...".format(filename))
            cnt = BBCIDataset(filename, load_sensor_names=sensor_names).load()
            cnt = cnt.drop_channels(['STI 014'])
            log.info("Resampling...")
            cnt = resample_cnt(cnt, 100)
            log.info("Standardizing...")
            cnt = mne_apply(
                lambda a: exponential_running_standardize(
                    a.T, init_block_size=50).T, cnt)

            log.info("Transform to set...")
            full_set = (create_signal_target_with_breaks_from_mne(
                cnt,
                kwargs['name_to_start_codes'],
                kwargs['trial_ival'],
                kwargs['name_to_stop_codes'],
                kwargs['min_break_length_ms'],
                kwargs['max_break_length_ms'],
                kwargs['break_ival'],
                prepad_trials_to_n_samples=kwargs['input_time_length'],
            ))
            all_sets.append(full_set)
        return all_sets

    sensor_names = [
        'Fp1', 'Fpz', 'Fp2', 'AF7', 'AF3', 'AF4', 'AF8', 'F7', 'F5', 'F3',
        'F1', 'Fz', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FC5', 'FC3', 'FC1', 'FCz',
        'FC2', 'FC4', 'FC6', 'FT8', 'M1', 'T7', 'C5', 'C3', 'C1', 'Cz', 'C2',
        'C4', 'C6', 'T8', 'M2', 'TP7', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2',
        'CP4', 'CP6', 'TP8', 'P7', 'P5', 'P3', 'P1', 'Pz', 'P2', 'P4', 'P6',
        'P8', 'PO7', 'PO5', 'PO3', 'POz', 'PO4', 'PO6', 'PO8', 'O1', 'Oz', 'O2'
    ]
    #sensor_names = ['C3', 'C4']
    n_chans = len(sensor_names)
    if not only_return_exp:
        all_sets = load_data(filenames, sensor_names, name_to_start_codes,
                             name_to_stop_codes, trial_ival, break_ival,
                             min_break_length_ms, max_break_length_ms,
                             input_time_length, filename_to_extra_args)
        from braindecode.datautil.signal_target import SignalAndTarget
        from braindecode.datautil.splitters import concatenate_sets

        train_set = concatenate_sets(all_sets[:6])
        valid_set = all_sets[6]
        test_set = all_sets[7]
    else:
        train_set = None
        valid_set = None
        test_set = None
    set_random_seeds(seed=20171017, cuda=True)
    n_classes = 5
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=n_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=30).create_network()
    to_dense_prediction_model(model)

    model.cuda()

    from torch import optim
    import numpy as np

    optimizer = optim.Adam(model.parameters())

    from braindecode.torch_ext.util import np_to_var
    # determine output size
    test_input = np_to_var(
        np.ones((2, n_chans, input_time_length, 1), dtype=np.float32))
    test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    print("{:d} predictions per input/trial".format(n_preds_per_input))

    from braindecode.datautil.iterators import CropsFromTrialsIterator
    iterator = CropsFromTrialsIterator(batch_size=32,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    from braindecode.experiments.experiment import Experiment
    from braindecode.experiments.monitors import RuntimeMonitor, LossMonitor, \
        CroppedTrialMisclassMonitor, MisclassMonitor
    from braindecode.experiments.stopcriteria import MaxEpochs
    from braindecode.torch_ext.losses import log_categorical_crossentropy
    import torch.nn.functional as F
    import torch as th
    from braindecode.torch_ext.modules import Expression

    loss_function = log_categorical_crossentropy

    model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_sample_misclass',
                     run_after_early_stop=True,
                     batch_modifier=None,
                     cuda=True)
    if not only_return_exp:
        exp.run()

    return exp