def test_eegnet_v4(): rng = np.random.RandomState(42) n_channels = 18 n_in_times = 500 n_classes = 2 n_samples = 7 X = rng.randn(n_samples, n_channels, n_in_times, 1) X = torch.Tensor(X.astype(np.float32)) model = EEGNetv4(n_channels, n_classes, input_window_samples=n_in_times) y_pred = model(X) assert y_pred.shape == (n_samples, n_classes)
def test_eegnet_v4(input_sizes): model = EEGNetv4(input_sizes['n_channels'], input_sizes['n_classes'], input_window_samples=input_sizes['n_in_times']) check_forward_pass(model, input_sizes)
batch_size = 32 n_epochs = 200 #one_window.shape : (208, 500) # Extract number of chans and time steps from dataset one_window = next(iter(train_loader))[0] n_chans = one_window.shape[1] input_window_samples = one_window.shape[2] model_name = 'deepnet_da' if model_name == 'eegnet': #print('Here') net = EEGNetv4(n_chans, class_number, input_window_samples=input_window_samples, final_conv_length='auto', drop_prob=0.5) elif model_name == 'shallowFBCSPnet': net = ShallowFBCSPNet( n_chans, class_number, input_window_samples=input_window_samples, final_conv_length='auto', ) # 51% elif model_name == 'deepnet': net = deepnet(n_chans, class_number, wind) # 81% elif model_name == 'deepnet_changeDepth': net = deepnet_changeDepth(n_chans, class_number, wind, depth) # 81% model_name = 'deepnet_changeDepth_' + str(depth) elif model_name == 'deepnet2':