Esempio n. 1
0
def test_gen_1d_gauss_range():
    res = 180
    range_values = (-10, res - 11)
    rfs, centers = sim.generate_1d_gaussian_rfs(1,
                                                res,
                                                range_values,
                                                random_tuning=False)
    sim_data = sim.generate_1d_rf_responses(rfs, np.array([-10]), res,
                                            range_values, 0)
    assert sim_data[0, ] > 0
    range_values = (10, res + 10)
    rfs, centers = sim.generate_1d_gaussian_rfs(1,
                                                res,
                                                range_values,
                                                random_tuning=False)
    sim_data = sim.generate_1d_rf_responses(rfs, np.array([10]), res,
                                            range_values, 0)
    assert sim_data[0, ] > 0
Esempio n. 2
0
def test_gen_1D_gauss_shape():
    n_vox = 10
    res = 180
    rfs, centers = sim.generate_1d_gaussian_rfs(n_vox, res, (0, res - 1))
    assert rfs.shape == (n_vox, res)
    assert centers.size == n_vox

    sim_data = sim.generate_1d_rf_responses(rfs, np.array([0, 10, 20]), res,
                                            (0, res - 1))
    assert sim_data.shape == (n_vox, 3)
Esempio n. 3
0
# Test number of data dimensions
def test_data_dimensions():
    x = np.random.rand(5, 10, 2)
    s = InvertedEncoding()
    with pytest.raises(ValueError):
        s.fit(x, np.random.rand(5))


# Define some data to use in the following tests.
n, dim = 297, 9
n_ = n // dim
y = np.repeat(np.linspace(0, 180-(180/dim), dim), n_)
voxel_rfs, _ = generate_1d_gaussian_rfs(dim, 180, (0, 179),
                                        random_tuning=False)
X = generate_1d_rf_responses(voxel_rfs, y, 180, (0, 179),
                             trial_noise=0.25).transpose()
X2 = generate_1d_rf_responses(voxel_rfs, y, 180, (0, 179),
                              trial_noise=0.25).transpose()


# Test if valid data can be fit.
def test_can_fit_data():
    Invt_model = InvertedEncoding()
    Invt_model.fit(X, y)


# Test if valid data can be fit in circular space.
def test_can_fit_circular_space():
    s = InvertedEncoding(6, 5, 'circular', range_stop=360)
    s.fit(X, y)