Esempio n. 1
0
def test_ignores_new_invalid_features():

    # One of the great unintentional features of brainless is that you can pass in new features at prediction time, that weren't present at training time, and they're silently ignored!
    # One edge case here is new features that are strange objects (lists, datetimes, intervals, or anything else that we can't process in our default data processing pipeline). Initially, we just ignored them in dict_vectorizer, but we need to ignore them earlier.
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_boston_train)

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_boston_test_dictionaries = df_boston_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_boston_test_dictionaries:
        if random.random() > 0.9:
            row['totally_new_feature'] = datetime.datetime.now()
            row['really_strange_feature'] = random.random
            row['we_should_really_ignore_this'] = Predictor
            row['pretty_vanilla_ignored_field'] = 8
            row['potentially_confusing_things_here'] = float('nan')
            row['potentially_confusing_things_again'] = float('inf')
            row['this_is_a_list'] = [1, 2, 3, 4, 5]
        predictions.append(saved_ml_pipeline.predict(row))

    print('predictions')
    print(predictions)
    print('predictions[0]')
    print(predictions[0])
    print('type(predictions)')
    print(type(predictions))
    first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -3.0
    assert lower_bound < first_score < -2.7

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_boston_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.1 < duration.total_seconds() / 1.0 < 15

    # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -2.7
Esempio n. 2
0
def getting_single_predictions_classifier_test():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical',
        'age_bucket': 'categorical'
    }

    ensemble_config = [{
        'model_name': 'LGBMClassifier'
    }, {
        'model_name': 'RandomForestClassifier'
    }]

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, ensemble_config=ensemble_config)

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_titanic_test_dictionaries = df_titanic_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)

    first_score = utils.calculate_brier_score_loss(df_titanic_test.survived,
                                                   predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -0.16

    assert -0.15 < first_score < -0.135

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_titanic_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_titanic_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() < 60

    # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)
    print('df_titanic_test_dictionaries')
    print(df_titanic_test_dictionaries)
    second_score = utils.calculate_brier_score_loss(df_titanic_test.survived,
                                                    predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert -0.15 < second_score < -0.135
Esempio n. 3
0
# Load data
df_train, df_test = get_boston_dataset()

# Tell auto_ml which column is 'output'
# Also note columns that aren't purely numerical
# Examples include ['nlp', 'date', 'categorical', 'ignore']
column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

ml_predictor = Predictor(type_of_estimator='regressor',
                         column_descriptions=column_descriptions)

ml_predictor.train(df_train)

# Score the model on test data
test_score = ml_predictor.score(df_test, df_test.MEDV)

# auto_ml is specifically tuned for running in production
# It can get predictions on an individual row (passed in as a dictionary)
# A single prediction like this takes ~1 millisecond
# Here we will demonstrate saving the trained model, and loading it again
file_name = ml_predictor.save()

trained_model = load_ml_model(file_name)

# .predict and .predict_proba take in either:
# A pandas DataFrame
# A list of dictionaries
# A single dictionary (optimized for speed in production evironments)
predictions = trained_model.predict(df_test)
print(predictions)
Esempio n. 4
0
def getting_single_predictions_regressor_test():
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ensemble_config = [{
        'model_name': 'LGBMRegressor'
    }, {
        'model_name': 'RandomForestRegressor'
    }]

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    # NOTE: this is bad practice to pass in our same training set as our fl_data set, but we don't have enough data to do it any other way
    ml_predictor.train(df_boston_train, ensemble_config=ensemble_config)

    test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV)

    print('test_score')
    print(test_score)

    assert -3.5 < test_score < -2.8

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_boston_test_dictionaries = df_boston_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -3.5

    assert lower_bound < first_score < -2.8

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_boston_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() / 1.0 < 60

    # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -2.8
Esempio n. 5
0
def getting_single_predictions_multilabel_classification(model_name=None):
    # brainless does not support multilabel classification for deep learning at the moment
    if model_name == 'DeepLearningClassifier' or model_name == 'CatBoostClassifier':
        return

    np.random.seed(0)

    df_twitter_train, df_twitter_test = utils.get_twitter_sentiment_multilabel_classification_dataset(
    )

    column_descriptions = {
        'airline_sentiment': 'output',
        'airline': 'categorical',
        'text': 'ignore',
        'tweet_location': 'categorical',
        'user_timezone': 'categorical',
        'tweet_created': 'date'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)
    ml_predictor.train(df_twitter_train, model_names=model_name)

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_twitter_test_dictionaries = df_twitter_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_twitter_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    print('predictions')
    print(predictions)

    first_score = accuracy_score(df_twitter_test.airline_sentiment,
                                 predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good
    lower_bound = 0.67
    # LGBM is super finnicky here- sometimes it's fine, but sometimes it does pretty terribly.
    if model_name == 'LGBMClassifier':
        lower_bound = 0.6
    assert lower_bound < first_score < 0.79

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_twitter_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_twitter_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro,
    # this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.05 < duration.total_seconds() < 60

    # 3. make sure we're not modifying the dictionaries
    # (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_twitter_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    print('predictions')
    print(predictions)
    print('df_twitter_test_dictionaries')
    print(df_twitter_test_dictionaries)
    second_score = accuracy_score(df_twitter_test.airline_sentiment,
                                  predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good
    assert lower_bound < second_score < 0.79
def test_user_input_func_classification():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    def age_bucketing(data):
        def define_buckets(age):
            if age <= 17:
                return 'youth'
            elif age <= 40:
                return 'adult'
            elif age <= 60:
                return 'adult2'
            else:
                return 'over_60'

        if isinstance(data, dict):
            data['age_bucket'] = define_buckets(data['age'])
        else:
            data['age_bucket'] = data.age.apply(define_buckets)

        return data

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical',
        'age_bucket': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, user_input_func=age_bucketing)

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_titanic_test_dictionaries = df_titanic_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)

    first_score = utils.calculate_brier_score_loss(df_titanic_test.survived,
                                                   predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    assert -0.16 < first_score < -0.135

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_titanic_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_titanic_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro,
    # this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.05 < duration.total_seconds() < 15

    # 3. make sure we're not modifying the dictionaries (the score is the same after
    # running a few experiments as it is the first time)

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)
    print('df_titanic_test_dictionaries')
    print(df_titanic_test_dictionaries)
    second_score = utils.calculate_brier_score_loss(df_titanic_test.survived,
                                                    predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert -0.16 < second_score < -0.135
def test_feature_learning_categorical_ensembling_getting_single_predictions_regression(
        model_name=None):
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions)

    # NOTE: this is bad practice to pass in our same training set as our fl_data set,
    # but we don't have enough data to do it any other way
    df_boston_train, fl_data = train_test_split(df_boston_train, test_size=0.2)
    ml_predictor.train_categorical_ensemble(
        df_boston_train,
        model_names=model_name,
        feature_learning=True,
        fl_data=fl_data,
        categorical_column='CHAS')

    # print('Score on training data')
    # ml_predictor.score(df_boston_train, df_boston_train.MEDV)

    file_name = ml_predictor.save(str(random.random()))

    from brainless.utils_models import load_ml_model

    saved_ml_pipeline = load_ml_model(file_name)

    # with open(file_name, 'rb') as read_file:
    #     saved_ml_pipeline = dill.load(read_file)
    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_boston_test_dictionaries = df_boston_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -4.5

    assert lower_bound < first_score < -3.4

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_boston_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro,
    # this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() / 1.0 < 15

    # 3. make sure we're not modifying the dictionaries
    # (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -3.4
def test_feature_learning_getting_single_predictions_classification(model_name=None):
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset()

    column_descriptions = {
        'survived': 'output',
        'sex': 'categorical',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(
        type_of_estimator='classifier', column_descriptions=column_descriptions)

    # NOTE: this is bad practice to pass in our same training set as our fl_data set,
    # but we don't have enough data to do it any other way
    df_titanic_train, fl_data = train_test_split(df_titanic_train, test_size=0.2)
    ml_predictor.train(
        df_titanic_train, model_names=model_name, feature_learning=True, fl_data=fl_data)

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_titanic_test_dictionaries = df_titanic_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)

    first_score = utils.calculate_brier_score_loss(df_titanic_test.survived, predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -0.16
    if model_name == 'DeepLearningClassifier':
        lower_bound = -0.187

    assert lower_bound < first_score < -0.133

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_titanic_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_titanic_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro,
    # this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() < 15

    # 3. make sure we're not modifying the dictionaries
    # (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)
    print('df_titanic_test_dictionaries')
    print(df_titanic_test_dictionaries)
    second_score = utils.calculate_brier_score_loss(df_titanic_test.survived, predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -0.133