def search(self):
        for spectrum in self.spectrum_dataset:
            if spectrum.has_precursor_charge():
                charge_list = [spectrum.precursor_charge]
                min_charge = 1 if spectrum.precursor_charge > 0 else -1
            else:
                if self.maximum_charge < 0:
                    charge_list = list(charge_range_(-1, self.maximum_charge))
                    min_charge = -1
                else:
                    charge_list = list(charge_range_(1, self.maximum_charge))
                    min_charge = 1

            precursor_candidates_masses = [
                (neutral_mass(spectrum.precursor_mz, c, self.charge_carrier), c) for c in charge_list
            ]

            precursor_candidate_structures = []
            for candidate_mass, candidate_charge in precursor_candidates_masses:
                precursor_candidate_structures.extend(
                    (s, candidate_charge) for s in self.structure_database.search_mass(
                        candidate_mass, self.precursor_mass_tolerance))

            solutions = []
            for precursor, charge in precursor_candidate_structures:
                solution = match(
                    spectrum.peaklist, precursor, self.product_ion_mass_tolerance,
                    charge_range=(min_charge, charge), charge_carrier=self.charge_carrier)
                solutions.append(solution)
            solution_set = SolutionSet(spectrum, solutions, spectrum.name)
            yield solution_set
 def test_deconvolution(self):
     scan = self.make_scan()
     algorithm_type = AveragineDeconvoluter
     deconresult = deconvolute_peaks(
         scan.peak_set, {
             "averagine": peptide,
             "scorer": PenalizedMSDeconVFitter(5., 1.),
             "use_subtraction": False,
         }, left_search_limit=3, deconvoluter_type=algorithm_type)
     dpeaks = deconresult.peak_set
     assert len(dpeaks) == 6
     for point in points:
         peak = dpeaks.has_peak(neutral_mass(point[0], point[1]))
         self.assertIsNotNone(peak)
 def test_deconvolution(self):
     scan = self.make_scan()
     algorithm_type = AveragineDeconvoluter
     deconresult = deconvolute_peaks(
         scan.peak_set, {
             "averagine": peptide,
             "scorer": PenalizedMSDeconVFitter(5., 1.),
             "use_subtraction": False
         }, deconvoluter_type=algorithm_type)
     dpeaks = deconresult.peak_set
     assert len(dpeaks) == 6
     for point in points:
         peak = dpeaks.has_peak(neutral_mass(point[0], point[1]))
         self.assertIsNotNone(peak)
    def scale(self, mz, charge=1, charge_carrier=PROTON):
        neutral = neutral_mass(mz, charge, charge_carrier)

        scale = neutral / self.base_mass
        scaled = {}
        for elem, count in self.base_composition.items():
            scaled[elem] = round(count * scale)

        scaled_mass = calculate_mass(scaled)
        delta_hydrogen = round(scaled_mass - neutral)
        H = scaled["H"]
        if H > delta_hydrogen:
            scaled["H"] = H - delta_hydrogen
        else:
            scaled["H"] = 0

        return scaled
Esempio n. 5
0
    def scale(self, mz, charge=1, charge_carrier=PROTON):
        neutral = neutral_mass(mz, charge, charge_carrier)

        scale = neutral / self.base_mass
        scaled = {}
        for elem, count in self.base_composition.items():
            scaled[elem] = round(count * scale)

        scaled_mass = calculate_mass(scaled)
        delta_hydrogen = round(scaled_mass - neutral)
        H = scaled["H"]
        if H > delta_hydrogen:
            scaled["H"] = H - delta_hydrogen
        else:
            scaled["H"] = 0

        return scaled
 def test_graph_deconvolution(self):
     scan = self.make_scan()
     scan.pick_peaks()
     self.assertIsNotNone(scan.peak_set)
     algorithm_type = AveraginePeakDependenceGraphDeconvoluter
     deconresult = deconvolute_peaks(
         scan.peak_set, {
             "averagine": peptide,
             "scorer": PenalizedMSDeconVFitter(5., 1.)
         }, deconvoluter_type=algorithm_type)
     dpeaks = deconresult.peak_set
     deconvoluter = deconresult.deconvoluter
     for point in points:
         peak = dpeaks.has_peak(neutral_mass(point[0], point[1]))
         self.assertIsNotNone(peak)
         fp = scan.has_peak(peak.mz)
         self.assertAlmostEqual(
             deconvoluter.peak_dependency_network.find_solution_for(fp).mz,
             peak.mz, 3)
 def test_graph_deconvolution(self):
     scan = self.make_scan()
     scan.pick_peaks()
     self.assertIsNotNone(scan.peak_set)
     algorithm_type = AveraginePeakDependenceGraphDeconvoluter
     deconresult = deconvolute_peaks(
         scan.peak_set, {
             "averagine": peptide,
             "scorer": PenalizedMSDeconVFitter(5., 1.)
         }, deconvoluter_type=algorithm_type)
     dpeaks = deconresult.peak_set
     assert len(dpeaks) == 2
     deconvoluter = deconresult.deconvoluter
     for point in points:
         peak = dpeaks.has_peak(neutral_mass(point[0], point[1]))
         self.assertIsNotNone(peak)
         fp = scan.has_peak(peak.mz)
         self.assertAlmostEqual(
             deconvoluter.peak_dependency_network.find_solution_for(fp).mz,
             peak.mz, 3)
Esempio n. 8
0
    def scale(self, mz, charge=1, charge_carrier=PROTON):
        """Given an m/z and a charge state, interpolate the composition
        of the polymer with the matching neutral mass

        Parameters
        ----------
        mz : float
            The reference m/z to calculate the neutral mass to interpolate from
        charge : int, optional
            The reference charge state to calculate the neutral mass. Defaults to 1
        charge_carrier : float, optional
            The mass of the charge carrier. Defaults to the mass of a proton.

        Returns
        -------
        Mapping
            The interpolated composition for the calculated neutral mass,
            rounded to the nearest integer and hydrogen corrected.

        References
        ----------
        Senko, M. W., Beu, S. C., & McLafferty, F. W. (1995). Determination of monoisotopic masses and ion populations
        for large biomolecules from resolved isotopic distributions. Journal of the American Society for Mass
        Spectrometry, 6(4), 229–233. http://doi.org/10.1016/1044-0305(95)00017-8
        """
        neutral = neutral_mass(mz, charge, charge_carrier)

        scale = neutral / self.base_mass
        scaled = {}
        for elem, count in self.base_composition.items():
            scaled[elem] = round(count * scale)

        scaled_mass = calculate_mass(scaled)
        delta_hydrogen = round(scaled_mass - neutral)
        H = scaled["H"]
        if H > delta_hydrogen:
            scaled["H"] = H - delta_hydrogen
        else:
            scaled["H"] = 0

        return scaled
Esempio n. 9
0
    def scale(self, mz, charge=1, charge_carrier=PROTON):
        """Given an m/z and a charge state, interpolate the composition
        of the polymer with the matching neutral mass

        Parameters
        ----------
        mz : float
            The reference m/z to calculate the neutral mass to interpolate from
        charge : int, optional
            The reference charge state to calculate the neutral mass. Defaults to 1
        charge_carrier : float, optional
            The mass of the charge carrier. Defaults to the mass of a proton.

        Returns
        -------
        Mapping
            The interpolated composition for the calculated neutral mass,
            rounded to the nearest integer and hydrogen corrected.

        References
        ----------
        Senko, M. W., Beu, S. C., & McLafferty, F. W. (1995). Determination of monoisotopic masses and ion populations
        for large biomolecules from resolved isotopic distributions. Journal of the American Society for Mass
        Spectrometry, 6(4), 229–233. http://doi.org/10.1016/1044-0305(95)00017-8
        """
        neutral = neutral_mass(mz, charge, charge_carrier)

        scale = neutral / self.base_mass
        scaled = {}
        for elem, count in self.base_composition.items():
            scaled[elem] = round(count * scale)

        scaled_mass = calculate_mass(scaled)
        delta_hydrogen = round(scaled_mass - neutral)
        H = scaled["H"]
        if H > delta_hydrogen:
            scaled["H"] = H - delta_hydrogen
        else:
            scaled["H"] = 0

        return scaled