Esempio n. 1
0
def test_minibatch_default():
    input_data = np.zeros((4, 5, 3))
    targets = np.ones((4, 5, 1))
    it = Minibatches(
        batch_size=3,
        my_data=input_data,
        my_targets=targets,
        shuffle=False)(default_handler)
    x = next(it)
    assert set(x.keys()) == {'my_data', 'my_targets'}
    assert x['my_data'].shape == (4, 3, 3)
    assert x['my_targets'].shape == (4, 3, 1)
    x = next(it)
    assert set(x.keys()) == {'my_data', 'my_targets'}
    assert x['my_data'].shape == (4, 2, 3)
    assert x['my_targets'].shape == (4, 2, 1)
    with pytest.raises(StopIteration):
        next(it)
def test_minibatch_with_length():
    input_data = np.zeros((4, 5, 3))
    targets = np.ones((4, 5, 1))
    seq_lens = [2, 3, 4, 1, 2]
    it = Minibatches(batch_size=3,
                     cut_according_to=seq_lens,
                     my_data=input_data,
                     my_targets=targets,
                     shuffle=False)(default_handler)
    x = next(it)
    assert set(x.keys()) == {'my_data', 'my_targets'}
    assert x['my_data'].shape == (4, 3, 3)
    assert x['my_targets'].shape == (4, 3, 1)
    x = next(it)
    assert set(x.keys()) == {'my_data', 'my_targets'}
    assert x['my_data'].shape == (2, 2, 3)
    assert x['my_targets'].shape == (2, 2, 1)
    with pytest.raises(StopIteration):
        next(it)
Esempio n. 3
0
    layer = SquareLayerImpl('Square',
                            {'default': BufferStructure('T', 'B', 3)}, set(),
                            set())
    run_layer_tests(layer, cfg)

# ------------------------------ Demo Example ------------------------------- #

# ---------------------------- Set up Iterators ----------------------------- #

data_dir = os.environ.get('BRAINSTORM_DATA_DIR', '../data')
data_file = os.path.join(data_dir, 'MNIST.hdf5')
ds = h5py.File(data_file, 'r')['normalized_split']
x_tr, y_tr = ds['training']['default'][:], ds['training']['targets'][:]
x_va, y_va = ds['validation']['default'][:], ds['validation']['targets'][:]

getter_tr = Minibatches(100, default=x_tr, targets=y_tr)
getter_va = Minibatches(100, default=x_va, targets=y_va)

# ----------------------------- Set up Network ------------------------------ #

inp, out = bs.tools.get_in_out_layers('classification', (28, 28, 1), 10)
network = bs.Network.from_layer(
    inp >> FullyConnected(500, name='Hid1', activation='linear') >> Square(
        name='MySquareLayer') >> out)

network.initialize(bs.initializers.Gaussian(0.01))

# ----------------------------- Set up Trainer ------------------------------ #

trainer = bs.Trainer(
    bs.training.MomentumStepper(learning_rate=0.01, momentum=0.9))
Esempio n. 4
0
import brainstorm as bs
from brainstorm.data_iterators import OneHot, Minibatches
from brainstorm.handlers import PyCudaHandler

bs.global_rnd.set_seed(42)

# ---------------------------- Set up Iterators ----------------------------- #

data_dir = os.environ.get('BRAINSTORM_DATA_DIR', '../data')
data_file = os.path.join(data_dir, 'HutterPrize.hdf5')
ds = h5py.File(data_file, 'r')['split']
x_tr, y_tr = ds['training']['default'][:], ds['training']['targets'][:]
x_va, y_va = ds['validation']['default'][:], ds['validation']['targets'][:]

getter_tr = OneHot(Minibatches(100, default=x_tr, targets=y_tr, shuffle=False),
                   {'default': 205})
getter_va = OneHot(Minibatches(100, default=x_va, targets=y_va, shuffle=False),
                   {'default': 205})

# ----------------------------- Set up Network ------------------------------ #

network = bs.tools.create_net_from_spec('classification', 205, 205, 'L1000')

# Uncomment next line to use the GPU
# network.set_handler(PyCudaHandler())
network.initialize(bs.initializers.Gaussian(0.01))

# ----------------------------- Set up Trainer ------------------------------ #

trainer = bs.Trainer(
Esempio n. 5
0
import brainstorm as bs
from brainstorm.data_iterators import Minibatches
from brainstorm.handlers import PyCudaHandler
from brainstorm.initializers import Gaussian

bs.global_rnd.set_seed(42)

# ----------------------------- Set up Iterators ---------------------------- #

data_dir = os.environ.get('BRAINSTORM_DATA_DIR', '../data')
data_file = os.path.join(data_dir, 'CIFAR-10.hdf5')
ds = h5py.File(data_file, 'r')['normalized_split']

getter_tr = Minibatches(100,
                        default=ds['training']['default'][:],
                        targets=ds['training']['targets'][:])
getter_va = Minibatches(100,
                        default=ds['validation']['default'][:],
                        targets=ds['validation']['targets'][:])

# ------------------------------ Set up Network ----------------------------- #

inp, fc = bs.tools.get_in_out_layers('classification', (32, 32, 3), 10)

(inp >> bs.layers.Convolution2D(
    32, kernel_size=(5, 5), padding=2, name='Conv1') >> bs.layers.Pooling2D(
        type="max", kernel_size=(3, 3), stride=(2, 2)) >>
 bs.layers.Convolution2D(32, kernel_size=(5, 5), padding=2, name='Conv2') >>
 bs.layers.Pooling2D(type="max", kernel_size=(3, 3), stride=(2, 2)) >>
 bs.layers.Convolution2D(64, kernel_size=(5, 5), padding=2, name='Conv3') >>
Esempio n. 6
0
from brainstorm.handlers import PyCudaHandler

from time import time

bs.global_rnd.set_seed(42)

# ---------------------------- Set up Iterators ----------------------------- #

data_dir = os.environ.get('BRAINSTORM_DATA_DIR', 'data')
data_file = os.path.join(data_dir, 'MNIST.hdf5')
ds = h5py.File(data_file, 'r')['normalized_split']
x_tr, y_tr = ds['training']['default'][:], ds['training']['targets'][:]
x_va, y_va = ds['validation']['default'][:], ds['validation']['targets'][:]

batch_size = 100
getter_tr = Minibatches(batch_size, default=x_tr, targets=y_tr)
getter_va = Minibatches(batch_size, default=x_va, targets=y_va)

# ----------------------------- Set up Network ------------------------------ #

inp, fc = bs.tools.get_in_out_layers('classification', (28, 28, 1), 10, projection_name='FC')
network = bs.Network.from_layer(
    inp >>
    bs.layers.Dropout(drop_prob=0.2) >>
    bs.layers.FullyConnected(1200, name='Hid1', activation='rel') >>
    bs.layers.Dropout(drop_prob=0.5) >>
    bs.layers.FullyConnected(1200, name='Hid2', activation='rel') >>
    bs.layers.Dropout(drop_prob=0.5) >>
    fc
)