Esempio n. 1
0
 def __init__(self, loc, scale, name, learnable=False, has_bias=False, is_observed=False, is_policy=False, is_reward=False):
     self._type = "Cauchy"
     ranges = {"loc": geometric_ranges.UnboundedRange(),
               "scale": geometric_ranges.RightHalfLine(0.)}
     super().__init__(name, loc=loc, scale=scale, learnable=learnable,
                      has_bias=has_bias, ranges=ranges, is_observed=is_observed, is_policy=is_policy, is_reward=is_reward)
     self.distribution = distributions.CauchyDistribution()
Esempio n. 2
0
 def __init__(self, loc, scale, name, learnable=False):
     self._type = "Cauchy"
     ranges = {
         "loc": geometric_ranges.UnboundedRange(),
         "scale": geometric_ranges.RightHalfLine(0.)
     }
     super().__init__(name,
                      loc=loc,
                      scale=scale,
                      learnable=learnable,
                      ranges=ranges)
     self.distribution = distributions.CauchyDistribution()
Esempio n. 3
0
 def __init__(self, mu, sigma, name, learnable=False):
     self._type = "Cauchy"
     ranges = {
         "mu": geometric_ranges.UnboundedRange(),
         "sigma": geometric_ranges.RightHalfLine(0.)
     }
     super().__init__(name,
                      mu=mu,
                      sigma=sigma,
                      learnable=learnable,
                      ranges=ranges)
     self.distribution = distributions.CauchyDistribution()