Esempio n. 1
0
 
 # List of machines external IP addresses
 machines = []
 local_machines = [('localhost', 2718+i) for i in xrange(nlocal)]
 machines.extend(local_machines)
 
 for m in local_machines:
     Process(target=open_server, args=(m[1],1,0)).start()
 
 equations = Equations('''
     dV/dt=(R*I-V)/tau : 1
     I : 1
     R : 1
     tau : second
 ''')
 input = loadtxt('current.txt')
 spikes = loadtxt('spikes.txt')
 results = modelfitting( model = equations,
                         reset = 0,
                         threshold = 1,
                         data = spikes,
                         input = input,
                         dt = .1*ms,
                         popsize = 1000,
                         maxiter = 5,
                         delta = 4*ms,
                         unit_type = 'CPU',
                         machines = machines,
                         R = [1.0e9, 9.0e9],
                         tau = [10*ms, 40*ms],
                         refractory = [0*ms, 10*ms])
Esempio n. 2
0
Example showing how to fit a single model
with different target spike trains (several groups).
'''
from brian import loadtxt, ms, Equations, second
from brian.library.modelfitting import *

if __name__ == '__main__':

    model = Equations('''
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
    ''')

    input = loadtxt('examples/modelfitting/current.txt')
    spikes0 = loadtxt('examples/modelfitting/spikes.txt')
    spikes = []
    for i in xrange(2):
        spikes.extend([(i, spike * second + 5 * i * ms) for spike in spikes0])

    results = modelfitting(model=model,
                           reset=0,
                           threshold=1,
                           data=spikes,
                           input=input,
                           dt=.1 * ms,
                           popsize=1000,
                           maxiter=3,
                           cpu=1,
                           delta=4 * ms,
Esempio n. 3
0
'''
Model fitting example.
Fit an integrate-and-fire model to an in-vitro electrophysiological 
recording during one second.
'''
from brian import loadtxt, ms, Equations
from brian.library.modelfitting import *

if __name__ == '__main__':
    equations = Equations('''
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
    ''')
    input = loadtxt('current.txt')
    spikes = loadtxt('spikes.txt')
    results = modelfitting(model=equations,
                           reset=0,
                           threshold=1,
                           data=spikes,
                           input=input,
                           dt=.1 * ms,
                           popsize=1000,
                           maxiter=3,
                           delta=4 * ms,
                           R=[1.0e9, 9.0e9],
                           tau=[10 * ms, 40 * ms],
                           refractory=[0 * ms, 10 * ms])
    print_table(results)
Esempio n. 4
0
        return criterion_values


if __name__ == '__main__':

    from brian import loadtxt, ms, savetxt, loadtxt, Equations, NeuronGroup, run, SpikeMonitor,\
         StateMonitor, Network
    from pylab import *

    equations = Equations('''
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
    ''')
    input = loadtxt('current.txt')

    trace = loadtxt('trace_artificial.txt')
    spikes = loadtxt('spikes_artificial.txt')

    # GAMMA FACTOR
    criterion = GammaFactor(delta=2 * ms)
    data = spikes
    #    data[:,1] += 50*ms

    # LP ERROR
    criterion = LpError(p=2, varname='V')
    data = trace

    # SIMULATE, EVALUATE CRITERION AND RECORD TRACES ON GPU
    neurons = 5
Esempio n. 5
0
        g.I = TimedArray(input, dt=.1*ms)
        g.tau = 25*ms
        g.R = 3e9
        SpM = SpikeMonitor(g)
        StM = StateMonitor(g, 'V', record=True)
        net = Network(g, SpM, StM)
        net.run(1*second)
        return StM.values[0], SpM.spikes
    
    equations = Equations('''
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
    ''')
    input = loadtxt('current.txt')
    
    # ARTIFICIAL DATA: R=3e9, tau=25*ms
#    spikes = loadtxt('spikes.txt') # real data
#    trace, spikes = generate_data()
#    savetxt('trace_artificial.txt', trace)
#    savetxt('spikes_artificial.txt', spikes)
    
    trace = loadtxt('trace_artificial.txt')
    spikes= loadtxt('spikes_artificial.txt')
    
    # GAMMA FACTOR
    criterion = GammaFactor(delta=2*ms)
    data = spikes
#    data[:,1] += 50*ms
    
Esempio n. 6
0
        SpM = SpikeMonitor(g)
        StM = StateMonitor(g, "V", record=True)
        net = Network(g, SpM, StM)
        net.run(1 * second)
        return StM.values[0], SpM.spikes

    equations = Equations(
        """
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
        #tau_metric : second
    """
    )
    input = loadtxt("current.txt")

    # ARTIFICIAL DATA: R=3e9, tau=25*ms
    #    spikes = loadtxt('spikes.txt') # real data
    trace, spikes = generate_data()
    #    savetxt('trace_artificial.txt', trace)
    #    savetxt('spikes_artificial.txt', spikes)

    #    trace = loadtxt('trace_artificial.txt')
    overlap = 10 * ms
    slices = 1
    dt = 0.1 * ms
    input, trace = slice_trace(input, trace, slices=slices, dt=dt, overlap=overlap)

    # GAMMA FACTOR
    #    criterion = GammaFactor(delta=2*ms)
Esempio n. 7
0
        g.tau = 25 * ms
        g.R = 3e9
        SpM = SpikeMonitor(g)
        StM = StateMonitor(g, 'V', record=True)
        net = Network(g, SpM, StM)
        net.run(1 * second)
        return StM.values[0], SpM.spikes

    equations = Equations('''
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
        #tau_metric : second
    ''')
    input = loadtxt('current.txt')

    # ARTIFICIAL DATA: R=3e9, tau=25*ms
    #    spikes = loadtxt('spikes.txt') # real data
    trace, spikes = generate_data()
    #    savetxt('trace_artificial.txt', trace)
    #    savetxt('spikes_artificial.txt', spikes)

    #    trace = loadtxt('trace_artificial.txt')
    overlap = 10 * ms
    slices = 1
    dt = .1 * ms
    input, trace = slice_trace(input,
                               trace,
                               slices=slices,
                               dt=dt,
Esempio n. 8
0

if __name__ == "__main__":

    from brian import loadtxt, ms, savetxt, loadtxt, Equations, NeuronGroup, run, SpikeMonitor, StateMonitor, Network
    from pylab import *

    equations = Equations(
        """
        dV/dt=(R*I-V)/tau : 1
        I : 1
        R : 1
        tau : second
    """
    )
    input = loadtxt("current.txt")

    trace = loadtxt("trace_artificial.txt")
    spikes = loadtxt("spikes_artificial.txt")

    # GAMMA FACTOR
    criterion = GammaFactor(delta=2 * ms)
    data = spikes
    #    data[:,1] += 50*ms

    # LP ERROR
    criterion = LpError(p=2, varname="V")
    data = trace

    # SIMULATE, EVALUATE CRITERION AND RECORD TRACES ON GPU
    neurons = 5