def structured_connectivity(N_excitatory, Jpos, sigma):
    """   
    J– = (360 - math.sqrt(2*pi) * sigma * J+)/ (360 - math.sqrt(2*pi) * sigma)
    W(θi – θj) = J– + (J+ – J–)exp[–(θi – θj)^2/2σ^2]
    
    Parameters
    ----------
    N_excitatory(int): Size of the excitatory population
    Jpos(float): Strength of the recurrent input within the excitatory population.
    sigma(float): standard deviation of the gaussian input profile in the 
        excitatory population.

    Returns
    -------
    presyn_weight : array
        weight profile for the structured excitatory-to-excitatory connectivity
        in recurrent population

    """
    tmp = np.sqrt(2 * np.pi) * sigma
    Jneg = (360 - tmp * Jpos) / (360 - tmp)
    neurons = np.arange(N_excitatory)
    delta_theta = 360 * np.minimum(neurons,
                                   N_excitatory - neurons) / N_excitatory
    presyn_weight = (
        Jneg + (Jpos - Jneg) * np.exp(-1 / 2 * delta_theta**2 / sigma**2))
    return presyn_weight
def gaussian_input(num_neurons, features, width):
    neurons = np.arange(0, 360, 360 / num_neurons)
    stim = np.zeros(num_neurons)
    for feature in features:
        tuning = stats.norm.pdf(neurons, loc=feature, scale=width)
        tuning = np.sqrt(2 * np.pi) * width * tuning
        stim += tuning
    return stim
def structured_connectivity(N_excitatory, Jpos, sigma):
    tmp = np.sqrt(2 * np.pi) * sigma
    Jneg = (360 - tmp * Jpos) / (360 - tmp)
    neuron = np.arange(N_excitatory)
    delta_theta = 360 * np.minimum(neuron,
                                   N_excitatory - neuron) / N_excitatory
    presyn_weight = (
        Jneg + (Jpos - Jneg) * np.exp(-1 / 2 * delta_theta**2 / sigma**2))
    return presyn_weight / sum(presyn_weight) * 360
 def plot_raster():
     ax.plot(spike_monitor.t / ms,
             spike_monitor.i,
             c="k",
             marker=".",
             markersize=2,
             linewidth=0)
     ax.set_xlabel('Time (ms)')
     ax.set_xticks(np.arange(0, 2001, 100))
     ax.set_ylabel('Neuron index')
     ax.set_ylim(0, num_neuron)
     ax.set_title("Raster Plot", fontsize=10)
     plt.savefig(num_trial + 'raster_1d.png', quality=95)
Esempio n. 5
0
def test_correct_solution_2D(M):
    """
    Function to test if solution is correct, returning detailed results.
    M is a 2D matrix, i.e. cell-wise competition is assumed to have a winner.
    """

    # Check if matrix is valid size.
    M = np.array(M)
    nrow, ncol = M.shape
    if nrow != ncol:
        raise ValueError('Matrix is not square size!')
    if not np.sqrt(nrow).is_integer():
        raise ValueError('Matrix length is not a square number!')

    unique_vals = np.arange(nrow) + 1

    # Test each row.
    row_correct = np.array(
        [np.array_equal(np.unique(M[i, :]), unique_vals) for i in range(nrow)])

    # Test each column.
    col_correct = np.array(
        [np.array_equal(np.unique(M[:, j]), unique_vals) for j in range(ncol)])

    # Test each sub-rectangle.
    nsrow, nscol = int(np.sqrt(nrow)), int(np.sqrt(ncol))
    sub_correct = [[
        np.array_equal(
            np.unique(M[(nsrow * i):(nsrow * (i + 1)),
                        (nscol * j):(nscol * (j + 1))]), unique_vals)
        for j in range(nscol)
    ] for i in range(nsrow)]
    sub_correct = np.array(sub_correct)

    # Collest test results.
    test_res = {'rows': row_correct, 'cols': col_correct, 'subs': sub_correct}

    return test_res
Esempio n. 6
0
spike_mon = SpikeMonitor(neurons)

run(sim_time, report='stdout')

weights = np.array(e_synapses.w / mV)

f = h5py.File(STDP_WEIGHTS_FILE, 'w')
f["weights"] = weights
f.close()

fig, ax = plt.subplots()
ax.hist(e_synapses.w / mV, bins=50)
ax.set(xlabel='$w_e$ (mV)')

fig, ax = plt.subplots()
ax.vlines(np.arange(n_repetitions * 10) * repeat_every / second,
          0,
          100,
          color='gray',
          alpha=0.5)
ax.vlines(np.arange(n_repetitions * 10) * repeat_every / second +
          pattern_length / second,
          0,
          100,
          color='gray',
          alpha=0.5)
ax.plot(spike_mon.t / second, spike_mon.i, '|')
ax.set(xlim=(0, 10), xlabel='time (s)')

plt.show()
Esempio n. 7
0
def plot_synapses(S, n, elev_azim_list, fig_dir, nspl=50):
    """
    Visualize Sudoku connectivity S as 3D matrix from different angles.

    TODO: make it weighted!
    """

    # Init params.
    nv = np.arange(n)
    xspl, yspl = calc_base_spline(nspl)

    # Init figure.
    fig = plt.figure(figsize=(10, 10))
    ax = plt.axes(projection='3d')
    ax.set_aspect(1)
    node_cols = get_node_colors(n)

    # Plot table at the bottom.
    kws = {'color': 'k'}
    lims = [-0.5, n - 0.5]
    zlvl = [-0.5, -0.5]
    for iv in range(n + 1):
        lvl = iv - 0.5
        lw = 4 if not iv % np.sqrt(n) else 2
        ax.plot(lims, [lvl, lvl], zlvl, lw=lw, **kws)
        ax.plot([lvl, lvl], lims, zlvl, lw=lw, **kws)

    # Plot nodes.
    x, y, z = zip(*sudoku_util.all_ijk_triples(n))
    all_node_cols = [node_cols[zi] for zi in z]
    ax.scatter(x, y, z, marker='o', c=all_node_cols, s=200)

    # Plot each connection.
    for idx1, idx2 in zip(S.i, S.j):

        i1, j1, k1 = sudoku_util.mat_idx(idx1, n)
        i2, j2, k2 = sudoku_util.mat_idx(idx2, n)

        # Get 3D curve of connection.
        v1, v2 = [i1, j1, k1], [i2, j2, k2]
        x, y, z = calc_3D_spline_coords(v1, v2, xspl, yspl)

        # Plot connection curve.
        ax.plot(x, y, z, ls='-', color=node_cols[k1], alpha=0.5, lw=0.5)

        # TODO: add arrow head to show direction?

    # Format plot.
    ax.set_xlabel('Row')
    ax.set_ylabel('Column')
    ax.set_zlabel('Neuron')
    for f_tp, f_tl in [(ax.set_xticks, ax.set_xticklabels),
                       (ax.set_yticks, ax.set_yticklabels),
                       (ax.set_zticks, ax.set_zticklabels)]:
        f_tp(nv)
        f_tl(nv + 1)

    # Set limits.
    lim = [-0.5, n - 0.5]
    ax.set_xlim(lim)
    ax.set_ylim(lim)
    ax.set_zlim(lim)

    # Set background color.
    ax.set_facecolor((1.0, 1.0, 1.0))

    # Save it from different viewpoints.
    for elev, azim in elev_azim_list:
        ax.view_init(elev=elev, azim=azim)
        ffig = fig_dir + 'elev_{}_azim_{}.png'.format(elev, azim)
        fig.savefig(ffig, dpi=300, bbox_inches='tight')

    return ax
Esempio n. 8
0
set_device("genn")

N = 10000  # 10000 "neurons"
bin_size = 2 * ms
p = 1 * Hz * bin_size  # Firing rate per neuron: 1Hz
total = 10 * second  # Total length of our stimulus

spikes = np.random.rand(N, int(total / bin_size)) < p

pattern_length = 250 * ms
pattern = spikes[:, 0:int(pattern_length / bin_size)]

repeat_every = pattern_length * 4
n_repetitions = int(total / repeat_every)

for rep in np.arange(n_repetitions):
    spikes[:, rep *
           int(repeat_every / bin_size):rep * int(repeat_every / bin_size) +
           int(pattern_length / bin_size)] = pattern

indices, time_bins = spikes.nonzero()
times = time_bins * bin_size

fig, ax = plt.subplots()
ax.plot(times / second, indices, '.')
# Add lines to show the repeated stimulation windows
ax.vlines(np.arange(n_repetitions) * repeat_every / second,
          0,
          500,
          color='gray')
ax.vlines(np.arange(n_repetitions) * repeat_every / second +
Esempio n. 9
0
def all_ijk_triples(n):
    """Return all (i, j, k) triplets for table size n."""

    nv = np.arange(n)
    ijk_triples = list(product(nv, nv, nv))
    return ijk_triples
Esempio n. 10
0
def all_ij_pairs(n):
    """Return all (i, j) pairs for table size n."""

    nv = np.arange(n)
    ij_pairs = list(product(nv, nv))
    return ij_pairs
Esempio n. 11
0
    spikes = np.random.rand(IMG_SIZE, int(total / bin_size)) < p
    # create zero pattern first for we only fill nonzero position after
    pattern = np.zeros([IMG_SIZE, int(pattern_length / bin_size)])
    img_flatten = np.array(train_img[i]).flatten()

    # This parameter is gotten using several experiments
    rates = img_flatten / 255 * 125 * Hz

    inp = PoissonGroup(IMG_SIZE, rates)
    spikeMonitor = SpikeMonitor(inp)
    run(250 * ms, report="text")

    indices, times = spikeMonitor.it
    for j in range(np.array(indices).shape[0]):
        pattern[indices[j]][int(times[j] / bin_size)] = True
    for rep in np.arange(n_repetitions):
        spikes[:, rep * int(repeat_every / bin_size):rep *
               int(repeat_every / bin_size) +
               int(pattern_length / bin_size)] = pattern
    indices, time_bins = spikes.nonzero()
    # add a const shift to move the spikes time later,
    # every img produces spikes for (total) seconds
    time_bins += np.repeat(i * int(total / bin_size), time_bins.shape[0])
    # print("Shift Value: %d " % (i * int(total / bin_size)))
    times = time_bins * bin_size

    # plt.plot(times / second, indices, '.')
    # # Add lines to show the repeated stimulation windows
    # plt.vlines(np.arange(n_repetitions) * repeat_every / second, 0, 500, color='gray')
    # plt.vlines(np.arange(n_repetitions) * repeat_every / second + pattern_length / second, 0, 500, color='gray')
    # plt.xlim(i * 10, i*10+5)
def gaussian_input(num_neurons, center_deg, width_deg):
    neuron = np.arange(0, 360, 360 / num_neurons)
    tuning = stats.norm.pdf(neuron, loc=center_deg, scale=width_deg)
    return tuning * width_deg