Esempio n. 1
0
        I_synI = gi * nS * (-85.*mV-v)                          : amp
        dge/dt = -ge/(1.0*ms)                                   : 1
        dgi/dt = -gi/(2.0*ms)                                  : 1
        '''
eqs_stdp_ee = '''
                post2before                            : 1.0
                dpre/dt   =   -pre/(tc_pre_ee)         : 1.0
                dpost1/dt  = -post1/(tc_post_1_ee)     : 1.0
                dpost2/dt  = -post2/(tc_post_2_ee)     : 1.0
            '''
eqs_stdp_pre_ee = 'pre = 1.; w -= nu_ee_pre * post1'
eqs_stdp_post_ee = 'post2before = post2; w += nu_ee_post * pre * post2before; post1 = 1.; post2 = 1.'



b.ion()
fig_num = 1
neuron_groups = {}
input_groups = {}
connections = {}
stdp_methods = {}
rate_monitors = {}
spike_monitors = {}
spike_counters = {}
result_monitor = np.zeros((update_interval,n_e))




neuron_groups['e'] = b.NeuronGroup(n_e*len(population_names), neuron_eqs_e, threshold= v_thresh_e, refractory= refrac_e, reset= scr_e, 
                                   compile = True, freeze = True)
Esempio n. 2
0
        dv/dt = ((v_rest_i - v) + (I_synE+I_synI) / nS) / (10*ms)  : volt (unless refractory)
        I_synE = ge * nS *         -v                           : amp
        I_synI = gi * nS * (-85.*mV-v)                          : amp
        dge/dt = -ge/(1.0*ms)                                   : 1
        dgi/dt = -gi/(2.0*ms)                                  : 1
        '''
eqs_stdp_ee = '''
                post2before                            : 1
                dpre/dt   =   -pre/(tc_pre_ee)         : 1 (event-driven)
                dpost1/dt  = -post1/(tc_post_1_ee)     : 1 (event-driven)
                dpost2/dt  = -post2/(tc_post_2_ee)     : 1 (event-driven)
            '''
eqs_stdp_pre_ee = 'pre = 1.; w = clip(w + nu_ee_pre * post1, 0, wmax_ee)'
eqs_stdp_post_ee = 'post2before = post2; w = clip(w + nu_ee_post * pre * post2before, 0, wmax_ee); post1 = 1.; post2 = 1.'

b2.ion()
fig_num = 1
neuron_groups = {}
input_groups = {}
connections = {}
rate_monitors = {}
spike_monitors = {}
spike_counters = {}
result_monitor = np.zeros((update_interval,n_e))

neuron_groups['e'] = b2.NeuronGroup(n_e*len(population_names), neuron_eqs_e, threshold= v_thresh_e_str, refractory= refrac_e, reset= scr_e, method='euler')
neuron_groups['i'] = b2.NeuronGroup(n_i*len(population_names), neuron_eqs_i, threshold= v_thresh_i_str, refractory= refrac_i, reset= v_reset_i_str, method='euler')


#------------------------------------------------------------------------------
# create network population and recurrent connections
        dv/dt = ((v_rest_i - v) + (I_synE+I_synI) / nS) / (10*ms)  : volt (unless refractory)
        I_synE = ge * nS *         -v                           : amp
        I_synI = gi * nS * (-85.*mV-v)                          : amp
        dge/dt = -ge/(1.0*ms)                                   : 1
        dgi/dt = -gi/(2.0*ms)                                  : 1
        '''
eqs_stdp_ee = '''
                post2before                            : 1
                dpre/dt   =   -pre/(tc_pre_ee)         : 1 (event-driven)
                dpost1/dt  = -post1/(tc_post_1_ee)     : 1 (event-driven)
                dpost2/dt  = -post2/(tc_post_2_ee)     : 1 (event-driven)
            '''
eqs_stdp_pre_ee = 'pre = 1.; w = clip(w + nu_ee_pre * post1, 0, wmax_ee)'
eqs_stdp_post_ee = 'post2before = post2; w = clip(w + nu_ee_post * pre * post2before, 0, wmax_ee); post1 = 1.; post2 = 1.'

b2.ion()
fig_num = 1
neuron_groups = {}
input_groups = {}
connections = {}
rate_monitors = {}
spike_monitors = {}
spike_counters = {}
result_monitor = np.zeros((update_interval,n_e))

neuron_groups['e'] = b2.NeuronGroup(n_e*len(population_names), neuron_eqs_e, threshold= v_thresh_e_str, refractory= refrac_e, reset= scr_e, method='euler')
neuron_groups['i'] = b2.NeuronGroup(n_i*len(population_names), neuron_eqs_i, threshold= v_thresh_i_str, refractory= refrac_i, reset= v_reset_i_str, method='euler')


#------------------------------------------------------------------------------
# create network population and recurrent connections