def main(): x = T.tensor3('features') #m = T.matrix('features_mask') y = T.imatrix('targets') #x = x+m.mean()*0 embedding_size = 300 glove_version = "glove.6B.300d.txt" #embedding_size = 50 #glove_version = "vectors.6B.50d.txt" wstd = 0.02 #vaguely normalize x = x / 3.0 - .5 #gloveMapping = Linear( #input_dim = embedding_size, #output_dim = 128, #weights_init = Orthogonal(), #biases_init = Constant(0.0), #name="gloveMapping" #) #gloveMapping.initialize() #o = gloveMapping.apply(x) #o = Rectifier(name="gloveRec").apply(o) o = x input_dim = 300 gru = GatedRecurrentFull( hidden_dim = input_dim, activation=Tanh(), #activation=bricks.Identity(), gate_activation=Sigmoid(), state_to_state_init=IsotropicGaussian(0.02), state_to_reset_init=IsotropicGaussian(0.02), state_to_update_init=IsotropicGaussian(0.02), input_to_state_transform = Linear( input_dim=input_dim, output_dim=input_dim, weights_init=IsotropicGaussian(0.02), biases_init=Constant(0.0)), input_to_update_transform = Linear( input_dim=input_dim, output_dim=input_dim, weights_init=IsotropicGaussian(0.02), biases_init=Constant(0.0)), input_to_reset_transform = Linear( input_dim=input_dim, output_dim=input_dim, weights_init=IsotropicGaussian(0.02), biases_init=Constant(0.0)) ) gru.initialize() rnn_in = o.dimshuffle(1, 0, 2) #rnn_in = o #rnn_out = gru.apply(rnn_in, mask=m.T) rnn_out = gru.apply(rnn_in) state_to_state = gru.rnn.state_to_state state_to_state.name = "state_to_state" #o = rnn_out[-1, :, :] o = rnn_out[-1] #o = rnn_out[:, -1, :] #o = rnn_out.mean(axis=1) #print rnn_last_out.eval({ #x: np.ones((3, 101, 300), dtype=theano.config.floatX), #m: np.ones((3, 101), dtype=theano.config.floatX)}) #raw_input() #o = rnn_out.mean(axis=1) score_layer = Linear( input_dim = 300, output_dim = 1, weights_init = IsotropicGaussian(std=wstd), biases_init = Constant(0.), use_bias=True, name="linear_score") score_layer.initialize() o = score_layer.apply(o) probs = Sigmoid().apply(o) cost = - (y * T.log(probs) + (1-y) * T.log(1 - probs)).mean() cost.name = 'cost' misclassification = (y * (probs < 0.5) + (1-y) * (probs > 0.5)).mean() misclassification.name = 'misclassification' #print rnn_in.shape.eval( #{x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), #}) #print rnn_out.shape.eval( #{x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), #m : np.ones((45, 111), dtype=theano.config.floatX)}) #print (m).sum(axis=1).shape.eval({ #m : np.ones((45, 111), dtype=theano.config.floatX)}) #print (m).shape.eval({ #m : np.ones((45, 111), dtype=theano.config.floatX)}) #raw_input() # ================= cg = ComputationGraph([cost]) #cg = apply_dropout(cg, variables=dropout_variables, drop_prob=0.5) params = cg.parameters for p in params: p.name += "___" + p.tag.annotations[0].name algorithm = GradientDescent( cost = cg.outputs[0], params=params, step_rule = CompositeRule([ StepClipping(threshold=4), AdaM(), #NAG(lr=0.1, momentum=0.9), #AdaDelta(), ]) ) #algorithm.initialize() print params f = theano.function([x, y], algorithm.cost) ipdb.set_trace() print "making plots" #theano.printing.pydotprint(algorithm.cost, outfile='unopt.png') theano.printing.pydotprint(f , outfile='opt.png', scan_graphs=True)
def main_run(_config, _log): from collections import namedtuple c = namedtuple("Config", _config.keys())(*_config.values()) _log.info("Running with" + str(_config)) import theano from theano import tensor as T import numpy as np from dataset import IMDBText, GloveTransformer from blocks.initialization import Uniform, Constant, IsotropicGaussian, NdarrayInitialization, Identity, Orthogonal from blocks.bricks.recurrent import LSTM, SimpleRecurrent, GatedRecurrent from blocks.bricks.parallel import Fork from blocks.bricks import Linear, Sigmoid, Tanh, Rectifier from blocks import bricks from blocks.extensions import Printing, Timing from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring from blocks.extensions.plot import Plot from plot import PlotHistogram from blocks.algorithms import GradientDescent, Adam, Scale, StepClipping, CompositeRule, AdaDelta from blocks.graph import ComputationGraph, apply_dropout from blocks.main_loop import MainLoop from blocks.model import Model from cuboid.algorithms import AdaM, NAG from cuboid.extensions import EpochProgress from fuel.streams import DataStream, ServerDataStream from fuel.transformers import Padding from fuel.schemes import ShuffledScheme from Conv1D import Conv1D, MaxPooling1D from schemes import BatchwiseShuffledScheme from bricks import WeightedSigmoid, GatedRecurrentFull from multiprocessing import Process import fuel import logging from initialization import SumInitialization from transformers import DropSources global train_p global test_p x = T.tensor3("features") # m = T.matrix('features_mask') y = T.imatrix("targets") # x = x+m.mean()*0 dropout_variables = [] embedding_size = 300 glove_version = "glove.6B.300d.txt" # embedding_size = 50 # glove_version = "vectors.6B.50d.txt" gloveMapping = Linear( input_dim=embedding_size, output_dim=c.rnn_input_dim, weights_init=Orthogonal(), # weights_init = IsotropicGaussian(c.wstd), biases_init=Constant(0.0), name="gloveMapping", ) gloveMapping.initialize() o = gloveMapping.apply(x) o = Rectifier(name="gloveRec").apply(o) dropout_variables.append(o) summed_mapped_glove = o.sum(axis=1) # take out the sequence glove_out = Linear( input_dim=c.rnn_input_dim, output_dim=1.0, weights_init=IsotropicGaussian(c.wstd), biases_init=Constant(0.0), name="mapping_to_output", ) glove_out.initialize() deeply_sup_0 = glove_out.apply(summed_mapped_glove) deeply_sup_probs = Sigmoid(name="deeply_sup_softmax").apply(deeply_sup_0) input_dim = c.rnn_input_dim hidden_dim = c.rnn_dim gru = GatedRecurrentFull( hidden_dim=hidden_dim, activation=Tanh(), # activation=bricks.Identity(), gate_activation=Sigmoid(), state_to_state_init=SumInitialization([Identity(1.0), IsotropicGaussian(c.wstd)]), state_to_reset_init=IsotropicGaussian(c.wstd), state_to_update_init=IsotropicGaussian(c.wstd), input_to_state_transform=Linear( input_dim=input_dim, output_dim=hidden_dim, weights_init=IsotropicGaussian(c.wstd), biases_init=Constant(0.0), ), input_to_update_transform=Linear( input_dim=input_dim, output_dim=hidden_dim, weights_init=IsotropicGaussian(c.wstd), # biases_init=Constant(-2.0)), biases_init=Constant(-1.0), ), input_to_reset_transform=Linear( input_dim=input_dim, output_dim=hidden_dim, weights_init=IsotropicGaussian(c.wstd), # biases_init=Constant(-3.0)) biases_init=Constant(-2.0), ), ) gru.initialize() rnn_in = o.dimshuffle(1, 0, 2) # rnn_in = o # rnn_out = gru.apply(rnn_in, mask=m.T) rnn_out = gru.apply(rnn_in) state_to_state = gru.rnn.state_to_state state_to_state.name = "state_to_state" # o = rnn_out[-1, :, :] o = rnn_out[-1] # o = rnn_out[:, -1, :] # o = rnn_out.mean(axis=1) # print rnn_last_out.eval({ # x: np.ones((3, 101, 300), dtype=theano.config.floatX), # m: np.ones((3, 101), dtype=theano.config.floatX)}) # raw_input() # o = rnn_out.mean(axis=1) dropout_variables.append(o) score_layer = Linear( input_dim=hidden_dim, output_dim=1, weights_init=IsotropicGaussian(std=c.wstd), biases_init=Constant(0.0), name="linear2", ) score_layer.initialize() o = score_layer.apply(o) probs = Sigmoid().apply(o) # probs = deeply_sup_probs cost = -(y * T.log(probs) + (1 - y) * T.log(1 - probs)).mean() # cost_deeply_sup0 = - (y * T.log(deeply_sup_probs) + (1-y) * T.log(1 - deeply_sup_probs)).mean() # cost += cost_deeply_sup0 * c.deeply_factor cost.name = "cost" misclassification = (y * (probs < 0.5) + (1 - y) * (probs > 0.5)).mean() misclassification.name = "misclassification" # print rnn_in.shape.eval( # {x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), # }) # print rnn_out.shape.eval( # {x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), # m : np.ones((45, 111), dtype=theano.config.floatX)}) # print (m).sum(axis=1).shape.eval({ # m : np.ones((45, 111), dtype=theano.config.floatX)}) # print (m).shape.eval({ # m : np.ones((45, 111), dtype=theano.config.floatX)}) # raw_input() # ================= cg = ComputationGraph([cost]) cg = apply_dropout(cg, variables=dropout_variables, drop_prob=0.5) params = cg.parameters algorithm = GradientDescent( cost=cg.outputs[0], params=params, step_rule=CompositeRule( [ StepClipping(threshold=4), Adam(learning_rate=0.002, beta1=0.1, beta2=0.001), # NAG(lr=0.1, momentum=0.9), # AdaDelta(), ] ), ) # ======== print "setting up data" ports = { "gpu0_train": 5557, "gpu0_test": 5558, "cuda0_train": 5557, "cuda0_test": 5558, "opencl0:0_train": 5557, "opencl0:0_test": 5558, "gpu1_train": 5559, "gpu1_test": 5560, } # batch_size = 16 # batch_size = 32 batch_size = 40 def start_server(port, which_set): fuel.server.logger.setLevel("WARN") dataset = IMDBText(which_set, sorted=True) n_train = dataset.num_examples # scheme = ShuffledScheme(examples=n_train, batch_size=batch_size) scheme = BatchwiseShuffledScheme(examples=n_train, batch_size=batch_size) stream = DataStream(dataset=dataset, iteration_scheme=scheme) print "loading glove" glove = GloveTransformer(glove_version, data_stream=stream) padded = Padding( data_stream=glove, # mask_sources=('features',) mask_sources=("features",), ) padded = DropSources(padded, ["features_mask"]) fuel.server.start_server(padded, port=port, hwm=20) train_port = ports[theano.config.device + "_train"] train_p = Process(target=start_server, args=(train_port, "train")) train_p.start() test_port = ports[theano.config.device + "_test"] test_p = Process(target=start_server, args=(test_port, "test")) test_p.start() # train_stream = ServerDataStream(('features', 'features_mask', 'targets'), port=train_port) # test_stream = ServerDataStream(('features', 'features_mask', 'targets'), port=test_port) train_stream = ServerDataStream(("features", "targets"), port=train_port) test_stream = ServerDataStream(("features", "targets"), port=test_port) print "setting up model" # ipdb.set_trace() n_examples = 25000 print "Batches per epoch", n_examples // (batch_size + 1) batches_extensions = 100 monitor_rate = 50 # ====== model = Model(cg.outputs[0]) extensions = [] extensions.append(EpochProgress(batch_per_epoch=n_examples // batch_size + 1)) extensions.append(TrainingDataMonitoring([cost, misclassification], prefix="train", every_n_batches=monitor_rate)) extensions.append( DataStreamMonitoring( [cost, misclassification], data_stream=test_stream, prefix="test", after_epoch=True, before_first_epoch=False, ) ) extensions.append(Timing()) extensions.append(Printing()) # extensions.append(Plot("norms", channels=[['train_lstm_norm', 'train_pre_norm']], after_epoch=True)) # extensions.append(Plot(theano.config.device+"_result", channels=[['test_misclassification', 'train_misclassification']], after_epoch=True)) # extensions.append(PlotHistogram( # channels=['train_state_to_state'], # bins=50, # every_n_batches=30)) extensions.append( Plot( theano.config.device + "_result", channels=[["train_cost"], ["train_misclassification"]], every_n_batches=monitor_rate, ) ) main_loop = MainLoop(model=model, data_stream=train_stream, algorithm=algorithm, extensions=extensions) main_loop.run()
def main(): x = T.tensor3('features') #m = T.matrix('features_mask') y = T.imatrix('targets') #x = x+m.mean()*0 embedding_size = 300 glove_version = "glove.6B.300d.txt" #embedding_size = 50 #glove_version = "vectors.6B.50d.txt" wstd = 0.02 #vaguely normalize x = x / 3.0 - .5 #gloveMapping = Linear( #input_dim = embedding_size, #output_dim = 128, #weights_init = Orthogonal(), #biases_init = Constant(0.0), #name="gloveMapping" #) #gloveMapping.initialize() #o = gloveMapping.apply(x) #o = Rectifier(name="gloveRec").apply(o) o = x input_dim = 300 gru = GatedRecurrentFull( hidden_dim=input_dim, activation=Tanh(), #activation=bricks.Identity(), gate_activation=Sigmoid(), state_to_state_init=IsotropicGaussian(0.02), state_to_reset_init=IsotropicGaussian(0.02), state_to_update_init=IsotropicGaussian(0.02), input_to_state_transform=Linear(input_dim=input_dim, output_dim=input_dim, weights_init=IsotropicGaussian(0.02), biases_init=Constant(0.0)), input_to_update_transform=Linear(input_dim=input_dim, output_dim=input_dim, weights_init=IsotropicGaussian(0.02), biases_init=Constant(0.0)), input_to_reset_transform=Linear(input_dim=input_dim, output_dim=input_dim, weights_init=IsotropicGaussian(0.02), biases_init=Constant(0.0))) gru.initialize() rnn_in = o.dimshuffle(1, 0, 2) #rnn_in = o #rnn_out = gru.apply(rnn_in, mask=m.T) rnn_out = gru.apply(rnn_in) state_to_state = gru.rnn.state_to_state state_to_state.name = "state_to_state" #o = rnn_out[-1, :, :] o = rnn_out[-1] #o = rnn_out[:, -1, :] #o = rnn_out.mean(axis=1) #print rnn_last_out.eval({ #x: np.ones((3, 101, 300), dtype=theano.config.floatX), #m: np.ones((3, 101), dtype=theano.config.floatX)}) #raw_input() #o = rnn_out.mean(axis=1) score_layer = Linear(input_dim=300, output_dim=1, weights_init=IsotropicGaussian(std=wstd), biases_init=Constant(0.), use_bias=True, name="linear_score") score_layer.initialize() o = score_layer.apply(o) probs = Sigmoid().apply(o) cost = -(y * T.log(probs) + (1 - y) * T.log(1 - probs)).mean() cost.name = 'cost' misclassification = (y * (probs < 0.5) + (1 - y) * (probs > 0.5)).mean() misclassification.name = 'misclassification' #print rnn_in.shape.eval( #{x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), #}) #print rnn_out.shape.eval( #{x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), #m : np.ones((45, 111), dtype=theano.config.floatX)}) #print (m).sum(axis=1).shape.eval({ #m : np.ones((45, 111), dtype=theano.config.floatX)}) #print (m).shape.eval({ #m : np.ones((45, 111), dtype=theano.config.floatX)}) #raw_input() # ================= cg = ComputationGraph([cost]) #cg = apply_dropout(cg, variables=dropout_variables, drop_prob=0.5) params = cg.parameters for p in params: p.name += "___" + p.tag.annotations[0].name algorithm = GradientDescent( cost=cg.outputs[0], params=params, step_rule=CompositeRule([ StepClipping(threshold=4), AdaM(), #NAG(lr=0.1, momentum=0.9), #AdaDelta(), ])) #algorithm.initialize() print params f = theano.function([x, y], algorithm.cost) ipdb.set_trace() print "making plots" #theano.printing.pydotprint(algorithm.cost, outfile='unopt.png') theano.printing.pydotprint(f, outfile='opt.png', scan_graphs=True)
def main_run(_config, _log): from collections import namedtuple c = namedtuple("Config", _config.keys())(*_config.values()) _log.info("Running with" + str(_config)) import theano from theano import tensor as T import numpy as np from dataset import IMDBText, GloveTransformer from blocks.initialization import Uniform, Constant, IsotropicGaussian, NdarrayInitialization, Identity, Orthogonal from blocks.bricks.recurrent import LSTM, SimpleRecurrent, GatedRecurrent from blocks.bricks.parallel import Fork from blocks.bricks import Linear, Sigmoid, Tanh, Rectifier from blocks import bricks from blocks.extensions import Printing, Timing from blocks.extensions.monitoring import (DataStreamMonitoring, TrainingDataMonitoring) from blocks.extensions.plot import Plot from plot import PlotHistogram from blocks.algorithms import GradientDescent, Adam, Scale, StepClipping, CompositeRule, AdaDelta from blocks.graph import ComputationGraph, apply_dropout from blocks.main_loop import MainLoop from blocks.model import Model from cuboid.algorithms import AdaM, NAG from cuboid.extensions import EpochProgress from fuel.streams import DataStream, ServerDataStream from fuel.transformers import Padding from fuel.schemes import ShuffledScheme from Conv1D import Conv1D, MaxPooling1D from schemes import BatchwiseShuffledScheme from bricks import WeightedSigmoid, GatedRecurrentFull from multiprocessing import Process import fuel import logging from initialization import SumInitialization from transformers import DropSources global train_p global test_p x = T.tensor3('features') #m = T.matrix('features_mask') y = T.imatrix('targets') #x = x+m.mean()*0 dropout_variables = [] embedding_size = 300 glove_version = "glove.6B.300d.txt" #embedding_size = 50 #glove_version = "vectors.6B.50d.txt" gloveMapping = Linear( input_dim=embedding_size, output_dim=c.rnn_input_dim, weights_init=Orthogonal(), #weights_init = IsotropicGaussian(c.wstd), biases_init=Constant(0.0), name="gloveMapping") gloveMapping.initialize() o = gloveMapping.apply(x) o = Rectifier(name="gloveRec").apply(o) dropout_variables.append(o) summed_mapped_glove = o.sum(axis=1) # take out the sequence glove_out = Linear(input_dim=c.rnn_input_dim, output_dim=1.0, weights_init=IsotropicGaussian(c.wstd), biases_init=Constant(0.0), name="mapping_to_output") glove_out.initialize() deeply_sup_0 = glove_out.apply(summed_mapped_glove) deeply_sup_probs = Sigmoid(name="deeply_sup_softmax").apply(deeply_sup_0) input_dim = c.rnn_input_dim hidden_dim = c.rnn_dim gru = GatedRecurrentFull( hidden_dim=hidden_dim, activation=Tanh(), #activation=bricks.Identity(), gate_activation=Sigmoid(), state_to_state_init=SumInitialization( [Identity(1.0), IsotropicGaussian(c.wstd)]), state_to_reset_init=IsotropicGaussian(c.wstd), state_to_update_init=IsotropicGaussian(c.wstd), input_to_state_transform=Linear(input_dim=input_dim, output_dim=hidden_dim, weights_init=IsotropicGaussian(c.wstd), biases_init=Constant(0.0)), input_to_update_transform=Linear( input_dim=input_dim, output_dim=hidden_dim, weights_init=IsotropicGaussian(c.wstd), #biases_init=Constant(-2.0)), biases_init=Constant(-1.0)), input_to_reset_transform=Linear( input_dim=input_dim, output_dim=hidden_dim, weights_init=IsotropicGaussian(c.wstd), #biases_init=Constant(-3.0)) biases_init=Constant(-2.0))) gru.initialize() rnn_in = o.dimshuffle(1, 0, 2) #rnn_in = o #rnn_out = gru.apply(rnn_in, mask=m.T) rnn_out = gru.apply(rnn_in) state_to_state = gru.rnn.state_to_state state_to_state.name = "state_to_state" #o = rnn_out[-1, :, :] o = rnn_out[-1] #o = rnn_out[:, -1, :] #o = rnn_out.mean(axis=1) #print rnn_last_out.eval({ #x: np.ones((3, 101, 300), dtype=theano.config.floatX), #m: np.ones((3, 101), dtype=theano.config.floatX)}) #raw_input() #o = rnn_out.mean(axis=1) dropout_variables.append(o) score_layer = Linear(input_dim=hidden_dim, output_dim=1, weights_init=IsotropicGaussian(std=c.wstd), biases_init=Constant(0.), name="linear2") score_layer.initialize() o = score_layer.apply(o) probs = Sigmoid().apply(o) #probs = deeply_sup_probs cost = -(y * T.log(probs) + (1 - y) * T.log(1 - probs)).mean() #cost_deeply_sup0 = - (y * T.log(deeply_sup_probs) + (1-y) * T.log(1 - deeply_sup_probs)).mean() # cost += cost_deeply_sup0 * c.deeply_factor cost.name = 'cost' misclassification = (y * (probs < 0.5) + (1 - y) * (probs > 0.5)).mean() misclassification.name = 'misclassification' #print rnn_in.shape.eval( #{x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), #}) #print rnn_out.shape.eval( #{x : np.ones((45, 111, embedding_size), dtype=theano.config.floatX), #m : np.ones((45, 111), dtype=theano.config.floatX)}) #print (m).sum(axis=1).shape.eval({ #m : np.ones((45, 111), dtype=theano.config.floatX)}) #print (m).shape.eval({ #m : np.ones((45, 111), dtype=theano.config.floatX)}) #raw_input() # ================= cg = ComputationGraph([cost]) cg = apply_dropout(cg, variables=dropout_variables, drop_prob=0.5) params = cg.parameters algorithm = GradientDescent( cost=cg.outputs[0], params=params, step_rule=CompositeRule([ StepClipping(threshold=4), Adam(learning_rate=0.002, beta1=0.1, beta2=0.001), #NAG(lr=0.1, momentum=0.9), #AdaDelta(), ])) # ======== print "setting up data" ports = { 'gpu0_train': 5557, 'gpu0_test': 5558, 'cuda0_train': 5557, 'cuda0_test': 5558, 'opencl0:0_train': 5557, 'opencl0:0_test': 5558, 'gpu1_train': 5559, 'gpu1_test': 5560, } #batch_size = 16 #batch_size = 32 batch_size = 40 def start_server(port, which_set): fuel.server.logger.setLevel('WARN') dataset = IMDBText(which_set, sorted=True) n_train = dataset.num_examples #scheme = ShuffledScheme(examples=n_train, batch_size=batch_size) scheme = BatchwiseShuffledScheme(examples=n_train, batch_size=batch_size) stream = DataStream(dataset=dataset, iteration_scheme=scheme) print "loading glove" glove = GloveTransformer(glove_version, data_stream=stream) padded = Padding( data_stream=glove, #mask_sources=('features',) mask_sources=('features', )) padded = DropSources(padded, ['features_mask']) fuel.server.start_server(padded, port=port, hwm=20) train_port = ports[theano.config.device + '_train'] train_p = Process(target=start_server, args=(train_port, 'train')) train_p.start() test_port = ports[theano.config.device + '_test'] test_p = Process(target=start_server, args=(test_port, 'test')) test_p.start() #train_stream = ServerDataStream(('features', 'features_mask', 'targets'), port=train_port) #test_stream = ServerDataStream(('features', 'features_mask', 'targets'), port=test_port) train_stream = ServerDataStream(('features', 'targets'), port=train_port) test_stream = ServerDataStream(('features', 'targets'), port=test_port) print "setting up model" #ipdb.set_trace() n_examples = 25000 print "Batches per epoch", n_examples // (batch_size + 1) batches_extensions = 100 monitor_rate = 50 #====== model = Model(cg.outputs[0]) extensions = [] extensions.append( EpochProgress(batch_per_epoch=n_examples // batch_size + 1)) extensions.append( TrainingDataMonitoring( [cost, misclassification], prefix='train', every_n_batches=monitor_rate, )) extensions.append( DataStreamMonitoring([cost, misclassification], data_stream=test_stream, prefix='test', after_epoch=True, before_first_epoch=False)) extensions.append(Timing()) extensions.append(Printing()) #extensions.append(Plot("norms", channels=[['train_lstm_norm', 'train_pre_norm']], after_epoch=True)) #extensions.append(Plot(theano.config.device+"_result", channels=[['test_misclassification', 'train_misclassification']], after_epoch=True)) #extensions.append(PlotHistogram( #channels=['train_state_to_state'], #bins=50, #every_n_batches=30)) extensions.append( Plot(theano.config.device + "_result", channels=[['train_cost'], ['train_misclassification']], every_n_batches=monitor_rate)) main_loop = MainLoop(model=model, data_stream=train_stream, algorithm=algorithm, extensions=extensions) main_loop.run()