Esempio n. 1
0
def set_all_to_image_coords(folder):
    for scanfiles in utils.image_iterator(folder):
        fits = scanfiles[0]
        regions = scanfiles[1]
        for band in range(4):
            if fits[band] and regions[band]:
                image_methods.set_region_type_to_image(regions[band],
                                                       fits[band])
Esempio n. 2
0
 def test_image_iterator(self):
     for scanfiles in utils.image_iterator(FITS_FOLDER):
         for band in range(3):
             fits_file = scanfiles[0][band]
             if fits_file == "":
                 continue
             reg_file = scanfiles[1][band]
             imarray, header = image_methods.get_image_data(fits_file)
             reg_mask = image_methods.get_region_masks(fits_file, reg_file)
Esempio n. 3
0
def add_annotations(folder, im_type="all_bands", reannotate=False):
    if im_type == "all_bands":
        iterator = ((x[0][i], x[1][i]) for i in range(4) \
           for x in utils.image_iterator(folder))
    else:
        iterator = utils.image_iterator(folder)
    print("\n\n\n\n\nAdding annotations\n\n\n\n\n\n\n\n\n\n\n")
    for scanfiles in iterator:
        if im_type == "composite":
            fits, reg = scanfiles[0], scanfiles[2][0]
            if any(fits) and (reg == "" or reannotate):
                fname = str([x for x in fits if x != ""][0])
                reg_name = f"{fname[:fname.find('-')]}-comp.reg"
                size = IMSIZE
                if reg == "":
                    reg_string = image_methods.annotate_composite(fits)
                else:
                    reg_string = image_methods.annotate_composite(fits, reg)
            else:
                reg_string = utils.get_text_in_file(reg)
        else:
            if im_type == "band_3":
                fits, reg = scanfiles[0][2], scanfiles[1][2]
            else:
                fits, reg = scanfiles
            if (reg == "" or reannotate) and fits != "":
                if reg == "":
                    reg_string = image_methods.annotate_image(fits)
                else:
                    reg_string = image_methods.annotate_image(fits, reg)
            else:
                reg_string = utils.get_text_in_file(reg)
            reg_name = f"{fits[:-5]}.reg"
            size = image_methods.get_image_data(fits)[0].shape[0]
        with open(reg_name, "w") as f:
            f.write(reg_string)
        print("GOING TO REGION")
        image_methods.annotate_region_with_size(reg_name, size)
Esempio n. 4
0
 def test_untrained_comet_detection(self):
     for images in utils.image_iterator(f"{BASE_DIR}/not_trained_comets"):
         fits = images[0]
         arrs = [image_methods.get_image_data(f)[0] for f in fits]
         preprod = [
             image_methods.preprocess(arr, resize=False) for arr in arrs
         ]
         resized = [image_methods.resize_image(pre, 512) for pre in preprod]
         comp = image_methods.get_composite_image(resized)
         image_methods.show(comp)
         answer = image_methods.detect_comet(preprod,
                                             do_show=True,
                                             im_type="composite")
         print(answer)
Esempio n. 5
0
 def test_pipeline(self):
     x = utils.image_iterator(FITS_FOLDER)
     for _ in range(160):
         scanfiles = next(x)
     print(scanfiles[0])
     ims = scanfiles[0]
     ims = [image_methods.get_image_data(im)[0] for im in ims]
     origs = ims.copy()
     image_methods.show_many(np.array(origs))
     preprod = [image_methods.preprocess(im, resize=False) for im in ims]
     resized = [image_methods.resize_image(im, 512) for im in preprod]
     image_methods.show_many(np.array(origs), row_2=np.array(resized))
     composite = image_methods.get_composite_image(resized)
     image_methods.show(composite, use_log=False)
     image_methods.detect_comet(composite,
                                do_show=True,
                                im_type="composite")
Esempio n. 6
0
def create_full_record(input_folder,
                       output_path,
                       im_type="all_bands",
                       classes=["comet"]):
    output_folder = output_path[:output_path.rindex("/")]
    utils.make_folder_if_doesnt_exist(output_folder)
    if os.path.exists(output_path):
        os.remove(output_path)

    writer = tf.python_io.TFRecordWriter(output_path)
    count = 0

    for scanfiles in utils.image_iterator(input_folder):
        if im_type != "all_bands":
            if im_type == "composite":
                fits_files = [f for f in scanfiles[0] if f != ""]
            elif im_type == "band_3":
                fits_files = [scanfiles[0][2]]
                if fits_files == [""]:
                    continue
            reg_files = [scanfiles[1][2]]
            print(count)
            print(fits_files)
            print(reg_files)
            rec = create_image_record(fits_files, reg_files, classes)
            writer.write(rec.SerializeToString())
            count += 1
        else:
            # iterates over the 4 bands
            for band in range(4):
                fits_file = [scanfiles[0][band]]
                reg_file = [scanfiles[1][band]]
                if fits_file != [""]:
                    print(count)
                    print(fits_file)
                    print(reg_file)
                    rec = create_image_record(fits_file, reg_file, classes)
                    writer.write(rec.SerializeToString())
                    count += 1
    writer.close()
    print(count)
Esempio n. 7
0
def clean_up_standardized_folder(folder, add_annotations=True):
    """
	add_annotations is whether or not the program should prompt if missing
	annotations
	takes a standardized folder structure:
	Folder:
		scanframe:
			scanframe-w{band}(blah).fits 
			OR
			scanframe-w{band}(blah).jpg 
			...
			AND
			scan(frame)-w{band}(blah).reg
			OR
			None
			...
		...
	
	and cleans up filenames and missing files
	Folder:
		scanframe:
			scanframe-w{band}.fits 
			...
			AND
			scanframe-w{band}.reg
			...
		...
	---
	NOTE: 	do not include w1, w2, w3, or w4 in the folder name. It must only
			be where it is expected, after the scanframe
	"""
    for images in utils.image_iterator(folder):
        im_files = images[0]
        reg_files = images[1]
        comp_reg = images[2][0]
        size = 512
        if comp_reg == "":
            im_files = [f for f in im_files if f != ""]
            j = im_files[0].rfind("-")
            comp_reg = f"{im_files[0][:j]}-comp.reg"
            comp_reg_string = image_methods.annotate_composite(im_files,
                                                               size=size)
            with open(comp_reg, "w") as f:
                f.write(comp_reg_string)

        image_methods.annotate_region_with_size(comp_reg, size)
        for band in range(4):
            im = im_files[band]
            if im == "":
                continue
            index = im.find(f"w{band + 1}")
            if index == -1:
                index = im.find(".") - 2
            if im.endswith(".jpg"):
                image_methods.convert_jpg_to_fits(im)
                im = f"{im[:-4]}.fits"
            new_im = f"{im[:index + 2]}.fits"
            im_files[band] = new_im
            os.rename(im, new_im)

            reg = reg_files[band]
            new_reg = f"{im[:index + 2]}.reg"
            if reg == "" and add_annotations:
                if comp_reg != "":
                    print("Composite region for reference:")
                    print(utils.get_text_in_file(comp_reg))
                reg_string = image_methods.annotate_image(new_im)
                with open(new_reg, "w") as f:
                    f.write(reg_string)
            else:
                reg_files[band] = new_reg
                if os.path.exists(reg):
                    os.rename(reg, new_reg)
            if add_annotations:
                image_methods.set_region_type_to_image(new_reg, new_im)
            size = image_methods.get_image_data(new_im)[0].shape[0]
            if add_annotations:
                image_methods.annotate_region_with_size(new_reg, size)
Esempio n. 8
0
def get_normed_data(image_folder, file_to_save=None, file_for_orig=None, 
							mode="comet", reg_files = True):
	"""
	IMAGE_FOLDER: (str) path to original WISE images
	FILE_TO_SAVE: (str) path to put numpy file of preprocessed data or None
	FILE_FOR_ORIG: (str) path to put numpy file of original data or None
	MODE: (str) in ["comet", "one_star", "mul_star", "defect"]
	REG_FILES: (bool) whether or not there are reg files for preprocessing
	---
	RETURNS: (4d np.array)  images zoomed in around the region file and
							preprocessed and sorted by band

							images[2] is an array of images from NEOWISE band 3

							images[1, 9, 0, 3] is pixel [0, 3] of the tenth 
							image on band 2
	---
	SAVES TO FILE:  (.npy) the returned images array
					(.npy) the original images array from the IMAGE_FOLDER
	"""
	# start out with lists (really, they should always be lists, but saving as
	# .npy files is convenient)
	images = [[], [], [], []]
	normal_images = [[], [], [], []]

	# num is used for debugging only, to isolate specific images
	num = 0

	# iterates over the fits and reg files
	for scanfiles in utils.image_iterator(image_folder):
		# iterates over the 4 bands
		for band in range(4):
			fits_file = scanfiles[0][band]
			if reg_files:
				reg_file = scanfiles[1][band]

			print(f"processing {fits_file}")

			# if there is no fits file corresponding to this band, skip this
			if fits_file != "":
				imarray, header = get_image_data(fits_file)

				# keep reference to the original image
				normal_images[band].append(imarray)

				# get all region masks in the image with corresponding mode
				region_masks = []
				if reg_files:
					region_masks = get_region_masks(fits_file, reg_file, mode)

				for reg_mask in region_masks:
					# process image here
					im = get_bbox_subimage(imarray, reg_mask)
					im = preprocess(im)
					images[band].append(im)
		num += 1
	# np.array for easy saving
	images = [np.array(ims) for ims in images]
	images = np.array(images)

	# only save to file if a path is given, otherwise don't worry about it
	if file_to_save:
		np.save(file_to_save, images)
	if file_for_orig:
		np.save(file_for_orig, normal_images)
	return images