Esempio n. 1
0
    def __init__(self, *args, **kwargs):
        """
        Environment kwargs applying logic::

            if <engine> kwarg is given:
                do not use default engine and strategy parameters;
                ignore <strategy> kwarg and all strategy and engine-related kwargs.

            else (no <engine>):
                use default engine parameters;
                if any engine-related kwarg is given:
                    override corresponding default parameter;

                if <strategy> is given:
                    do not use default strategy parameters;
                    if any strategy related kwarg is given:
                        override corresponding strategy parameter;

                else (no <strategy>):
                    use default strategy parameters;
                    if any strategy related kwarg is given:
                        override corresponding strategy parameter;

            if <dataset> kwarg is given:
                do not use default dataset parameters;
                ignore dataset related kwargs;

            else (no <dataset>):
                use default dataset parameters;
                    if  any dataset related kwarg is given:
                        override corresponding dataset parameter;

            If any <other> kwarg is given:
                override corresponding default parameter.
        """

        #print("start backtrader")

        # Parameters and default values:
        self.params = dict(

            # Backtrader engine mandatory parameters:
            engine=dict(
                start_cash=10.0,  # initial trading capital.
                broker_commission=
                0.001,  # trade execution commission, default is 0.1% of operation value.
                fixed_stake=10,  # single trade stake is fixed type by def.
            ),
            # Dataset mandatory parameters:
            dataset=dict(filename=None, ),
            strategy=dict(state_shape=dict(), ),
            render=dict(),
        )
        p2 = dict(
            # Strategy related parameters:
            # Observation state shape is dictionary of Gym spaces,
            # at least should contain `raw_state` field.
            # By convention first dimension of every Gym Box space is time embedding one;
            # one can define any shape; should match env.observation_space.shape.
            # observation space state min/max values,
            # For `raw_state' - absolute min/max values from BTgymDataset will be used.
            state_shape=dict(raw_state=spaces.Box(
                shape=(10, 4),
                low=-100,
                high=100,
            )),
            drawdown_call=
            None,  # episode maximum drawdown threshold, default is 90% of initial value.
            portfolio_actions=None,
            # agent actions,
            # should consist with BTgymStrategy order execution logic;
            # defaults are: 0 - 'do nothing', 1 - 'buy', 2 - 'sell', 3 - 'close position'.
            skip_frame=None,
            # Number of environment steps to skip before returning next response,
            # e.g. if set to 10 -- agent will interact with environment every 10th episode step;
            # Every other step agent's action is assumed to be 'hold'.
            # Note: INFO part of environment response is a list of all skipped frame's info's,
            #       i.e. [info[-9], info[-8], ..., info[0].
        )

        # Update self attributes, remove used kwargs:
        for key in dir(self):
            if key in kwargs.keys():
                setattr(self, key, kwargs.pop(key))

        self.metadata = {'render.modes': self.render_modes}

        # Verbosity control:
        if True:  #self.log is None:
            self.log = logging.getLogger('Env')
            log_levels = [
                (0, 'WARNING'),
                (1, 'INFO'),
                (2, 'DEBUG'),
            ]
            for key, level in log_levels:
                if key == self.verbose:
                    self.log.setLevel(level)

        # Network parameters:
        self.network_address += str(self.port)
        self.data_network_address += str(self.data_port)

        # Set server rendering:
        if self.render_enabled:
            self.renderer = BTgymRendering(self.metadata['render.modes'],
                                           **kwargs)

        else:
            self.renderer = BTgymNullRendering()
            self.log.info(
                'Rendering disabled. Call to render() will return null-plug image.'
            )

        # Append logging:
        self.renderer.log = self.log

        # Update params -1: pull from renderer, remove used kwargs:
        self.params['render'].update(self.renderer.params)
        for key in self.params['render'].keys():
            if key in kwargs.keys():
                _ = kwargs.pop(key)

        if self.data_master:
            # DATASET preparation, only data_master executes this:
            #
            if self.dataset is not None:
                # If BTgymDataset instance has been passed:
                # do nothing.
                msg = 'Custom Dataset class used.'

            else:
                # If no BTgymDataset has been passed,
                # Make default dataset with given CSV file:
                try:
                    os.path.isfile(str(self.params['dataset']['filename']))

                except:
                    raise FileNotFoundError(
                        'Dataset source data file not specified/not found')

                # Use kwargs to instantiate dataset:
                self.dataset = BTgymDataset(**kwargs)
                msg = 'Base Dataset class used.'

            # Append logging:
            self.dataset.log = self.log

            # Update params -2: pull from dataset, remove used kwargs:
            self.params['dataset'].update(self.dataset.params)
            for key in self.params['dataset'].keys():
                if key in kwargs.keys():
                    _ = kwargs.pop(key)

            self.log.info(msg)

        # Connect/Start data server (and get dataset statistic):
        self.log.info('Connecting data_server...')
        self._start_data_server()
        self.log.info('...done.')
        # ENGINE preparation:

        # Update params -3: pull engine-related kwargs, remove used:
        for key in self.params['engine'].keys():
            if key in kwargs.keys():
                self.params['engine'][key] = kwargs.pop(key)

        if self.engine is not None:
            # If full-blown bt.Cerebro() subclass has been passed:
            # Update info:
            msg = 'Custom Cerebro class used.'
            self.strategy = msg
            for key in self.params['engine'].keys():
                self.params['engine'][key] = msg

        # Note: either way, bt.observers.DrawDown observer [and logger] will be added to any BTgymStrategy instance
        # by BTgymServer process at runtime.

        else:
            # Default configuration for Backtrader computational engine (Cerebro),
            # if no bt.Cerebro() custom subclass has been passed,
            # get base class Cerebro(), using kwargs on top of defaults:
            self.engine = bt.Cerebro()
            msg = 'Base Cerebro class used.'

            # First, set STRATEGY configuration:
            if self.strategy is not None:
                # If custom strategy has been passed:
                msg2 = 'Custom Strategy class used.'

            else:
                # Base class strategy :
                self.strategy = BTgymBaseStrategy
                msg2 = 'Base Strategy class used.'

            # Add, using kwargs on top of defaults:
            strat_idx = self.engine.addstrategy(self.strategy, **kwargs)

            msg += ' ' + msg2

            # Second, set Cerebro-level configuration:
            self.engine.broker.setcash(self.params['engine']['start_cash'])
            self.engine.broker.setcommission(
                self.params['engine']['broker_commission'])
            self.engine.addsizer(bt.sizers.SizerFix,
                                 stake=self.params['engine']['fixed_stake'])

        self.log.info(msg)

        # Define observation space shape, minimum / maximum values and agent action space.
        # Retrieve values from configured engine or...

        # ...Update params -4:
        # Pull strategy defaults to environment params dict :
        for t_key, t_value in self.engine.strats[0][0][0].params._gettuple():
            self.params['strategy'][t_key] = t_value

        # Update it with values from strategy 'passed-to params':
        for key, value in self.engine.strats[0][0][2].items():
            self.params['strategy'][key] = value

        # ... Push it all back (don't ask):
        for key, value in self.params['strategy'].items():
            self.engine.strats[0][0][2][key] = value

        # For 'raw_state' min/max values,
        # the only way is to infer from raw Dataset price values (we already got those from data_server):
        if 'raw_state' in self.params['strategy']['state_shape'].keys():
            # Exclude 'volume' from columns we count:
            self.dataset_columns.remove('volume')

            #print(self.params['strategy'])
            #print('self.engine.strats[0][0][2]:', self.engine.strats[0][0][2])
            #print('self.engine.strats[0][0][0].params:', self.engine.strats[0][0][0].params._gettuple())

            # Override with absolute price min and max values:
            self.params['strategy']['state_shape']['raw_state'].low =\
                self.engine.strats[0][0][2]['state_shape']['raw_state'].low =\
                np.zeros(self.params['strategy']['state_shape']['raw_state'].shape) +\
                self.dataset_stat.loc['min', self.dataset_columns].min()

            self.params['strategy']['state_shape']['raw_state'].high = \
                self.engine.strats[0][0][2]['state_shape']['raw_state'].high = \
                np.zeros(self.params['strategy']['state_shape']['raw_state'].shape) + \
                self.dataset_stat.loc['max', self.dataset_columns].max()

            self.log.info(
                'Inferring `state_raw` high/low values form dataset: {:.6f} / {:.6f}.'
                .format(
                    self.dataset_stat.loc['min', self.dataset_columns].min(),
                    self.dataset_stat.loc['max', self.dataset_columns].max()))

        # Set observation space shape from engine/strategy parameters:
        self.observation_space = DictSpace(
            self.params['strategy']['state_shape'])

        self.log.debug('Obs. shape: {}'.format(self.observation_space.spaces))
        #self.log.debug('Obs. min:\n{}\nmax:\n{}'.format(self.observation_space.low, self.observation_space.high))

        # Set action space and corresponding server messages:
        self.action_space = spaces.Discrete(
            len(self.params['strategy']['portfolio_actions']))
        self.server_actions = self.params['strategy']['portfolio_actions']

        # Finally:
        self.server_response = None
        self.env_response = None

        # If instance is datamaster - it may or may not want to launch self BTgymServer (can do it later via reset);
        # else it always need to launch it:
        #if not self.data_master:
        self._start_server()
        self.closed = False

        self.log.info('Environment is ready.')
Esempio n. 2
0
    def __init__(self, **kwargs):
        """
        Keyword Args:

            filename=None (str, list):                      csv data file.
            **datafeed_args (any):                          any datafeed-related args, passed through to
                                                            default btgym.datafeed class.
            dataset=None (btgym.datafeed):                  BTgymDataDomain instance,
                                                            overrides `filename` or any other datafeed-related args.
            strategy=None (btgym.startegy):                 strategy to be used by `engine`, any subclass of
                                                            btgym.strategy.base.BTgymBaseStrateg
            engine=None (bt.Cerebro):                       environment simulation engine, any bt.Cerebro subclass,
                                                            overrides `strategy` arg.
            network_address=`tcp://127.0.0.1:` (str):       BTGym_server address.
            port=5500 (int):                                network port to use for server - API_shell communication.
            data_master=True (bool):                        let this environment control over data_server;
            data_network_address=`tcp://127.0.0.1:` (str):  data_server address.
            data_port=4999 (int):                           network port to use for server -- data_server communication.
            connect_timeout=60 (int):                       server connection timeout in seconds.
            render_enabled=True (bool):                     enable rendering for this environment;
            render_modes=['human', 'episode'] (list):       `episode` - plotted episode results;
                                                            `human` - raw_state observation.
            **render_args (any):                            any render-related args, passed through to renderer class.
            verbose=0 (int):                                verbosity mode, {0 - WARNING, 1 - INFO, 2 - DEBUG}
            log_level=None (int):                           logbook level {DEBUG=10, INFO=11, NOTICE=12, WARNING=13},
                                                            overrides `verbose` arg;
            log=None (logbook.Logger):                      external logbook logger,
                                                            overrides `log_level` and `verbose` args.
            task=0 (int):                                   environment id

        Environment kwargs applying logic::

            if <engine> kwarg is given:
                do not use default engine and strategy parameters;
                ignore <strategy> kwarg and all strategy and engine-related kwargs.

            else (no <engine>):
                use default engine parameters;
                if any engine-related kwarg is given:
                    override corresponding default parameter;

                if <strategy> is given:
                    do not use default strategy parameters;
                    if any strategy related kwarg is given:
                        override corresponding strategy parameter;

                else (no <strategy>):
                    use default strategy parameters;
                    if any strategy related kwarg is given:
                        override corresponding strategy parameter;

            if <dataset> kwarg is given:
                do not use default dataset parameters;
                ignore dataset related kwargs;

            else (no <dataset>):
                use default dataset parameters;
                    if  any dataset related kwarg is given:
                        override corresponding dataset parameter;

            If any <other> kwarg is given:
                override corresponding default parameter.
        """
        # Parameters and default values:
        self.params = dict(

            # Backtrader engine mandatory parameters:
            engine=dict(
                start_cash=10.0,  # initial trading capital.
                broker_commission=
                0.001,  # trade execution commission, default is 0.1% of operation value.
                fixed_stake=10,  # single trade stake is fixed type by def.
            ),
            # Dataset mandatory parameters:
            dataset=dict(filename=None, ),
            strategy=dict(state_shape=dict(), ),
            render=dict(),
        )
        p2 = dict(  # IS HERE FOR REFERENCE ONLY
            # Strategy related parameters:
            # Observation state shape is dictionary of Gym spaces,
            # at least should contain `raw_state` field.
            # By convention first dimension of every Gym Box space is time embedding one;
            # one can define any shape; should match env.observation_space.shape.
            # observation space state min/max values,
            # For `raw_state' - absolute min/max values from BTgymDataset will be used.
            state_shape=dict(raw_state=spaces.Box(
                shape=(10, 4), low=-100, high=100, dtype=np.float32)),
            drawdown_call=
            None,  # episode maximum drawdown threshold, default is 90% of initial value.
            portfolio_actions=None,
            # agent actions,
            # should consist with BTgymStrategy order execution logic;
            # defaults are: 0 - 'do nothing', 1 - 'buy', 2 - 'sell', 3 - 'close position'.
            skip_frame=None,
            # Number of environment steps to skip before returning next response,
            # e.g. if set to 10 -- agent will interact with environment every 10th episode step;
            # Every other step agent's action is assumed to be 'hold'.
            # Note: INFO part of environment response is a list of all skipped frame's info's,
            #       i.e. [info[-9], info[-8], ..., info[0].
        )
        # Update self attributes, remove used kwargs:
        for key in dir(self):
            if key in kwargs.keys():
                setattr(self, key, kwargs.pop(key))

        self.metadata = {'render.modes': self.render_modes}

        # Logging and verbosity control:
        if self.log is None:
            StreamHandler(sys.stdout).push_application()
            if self.log_level is None:
                log_levels = [(0, NOTICE), (1, INFO), (2, DEBUG)]
                self.log_level = WARNING
                for key, value in log_levels:
                    if key == self.verbose:
                        self.log_level = value
            self.log = Logger('BTgymAPIshell_{}'.format(self.task),
                              level=self.log_level)

        # Network parameters:
        self.network_address += str(self.port)
        self.data_network_address += str(self.data_port)

        # Set server rendering:
        if self.render_enabled:
            self.renderer = BTgymRendering(self.metadata['render.modes'],
                                           log_level=self.log_level,
                                           **kwargs)

        else:
            self.renderer = BTgymNullRendering()
            self.log.info(
                'Rendering disabled. Call to render() will return null-plug image.'
            )

        # Append logging:
        self.renderer.log = self.log

        # Update params -1: pull from renderer, remove used kwargs:
        self.params['render'].update(self.renderer.params)
        for key in self.params['render'].keys():
            if key in kwargs.keys():
                _ = kwargs.pop(key)

        if self.data_master:
            # DATASET preparation, only data_master executes this:
            #
            if self.dataset is not None:
                # If BTgymDataset instance has been passed:
                # do nothing.
                msg = 'Custom Dataset class used.'

            else:
                # If no BTgymDataset has been passed,
                # Make default dataset with given CSV file:
                try:
                    os.path.isfile(str(self.params['dataset']['filename']))

                except:
                    raise FileNotFoundError(
                        'Dataset source data file not specified/not found')

                # Use kwargs to instantiate dataset:
                self.dataset = BTgymDataset(**kwargs)
                msg = 'Base Dataset class used.'

            # Append logging:
            self.dataset.set_logger(self.log_level, self.task)

            # Update params -2: pull from dataset, remove used kwargs:
            self.params['dataset'].update(self.dataset.params)
            for key in self.params['dataset'].keys():
                if key in kwargs.keys():
                    _ = kwargs.pop(key)

            self.log.info(msg)

        # Connect/Start data server (and get dataset statistic):
        self.log.info('Connecting data_server...')
        self._start_data_server()
        self.log.info('...done.')
        # ENGINE preparation:

        # Update params -3: pull engine-related kwargs, remove used:
        for key in self.params['engine'].keys():
            if key in kwargs.keys():
                self.params['engine'][key] = kwargs.pop(key)

        if self.engine is not None:
            # If full-blown bt.Cerebro() subclass has been passed:
            # Update info:
            msg = 'Custom Cerebro class used.'
            self.strategy = msg
            for key in self.params['engine'].keys():
                self.params['engine'][key] = msg

        # Note: either way, bt.observers.DrawDown observer [and logger] will be added to any BTgymStrategy instance
        # by BTgymServer process at runtime.

        else:
            # Default configuration for Backtrader computational engine (Cerebro),
            # if no bt.Cerebro() custom subclass has been passed,
            # get base class Cerebro(), using kwargs on top of defaults:
            self.engine = bt.Cerebro()
            msg = 'Base Cerebro class used.'

            # First, set STRATEGY configuration:
            if self.strategy is not None:
                # If custom strategy has been passed:
                msg2 = 'Custom Strategy class used.'

            else:
                # Base class strategy :
                self.strategy = BTgymBaseStrategy
                msg2 = 'Base Strategy class used.'

            # Add, using kwargs on top of defaults:
            #self.log.debug('kwargs for strategy: {}'.format(kwargs))
            strat_idx = self.engine.addstrategy(self.strategy, **kwargs)

            msg += ' ' + msg2

            # Second, set Cerebro-level configuration:
            self.engine.broker.setcash(self.params['engine']['start_cash'])
            self.engine.broker.setcommission(
                self.params['engine']['broker_commission'])
            self.engine.addsizer(bt.sizers.SizerFix,
                                 stake=self.params['engine']['fixed_stake'])

        self.log.info(msg)

        # Define observation space shape, minimum / maximum values and agent action space.
        # Retrieve values from configured engine or...

        # ...Update params -4:
        # Pull strategy defaults to environment params dict :
        for t_key, t_value in self.engine.strats[0][0][0].params._gettuple():
            self.params['strategy'][t_key] = t_value

        # Update it with values from strategy 'passed-to params':
        for key, value in self.engine.strats[0][0][2].items():
            self.params['strategy'][key] = value

        # ... Push it all back (don't ask):
        for key, value in self.params['strategy'].items():
            self.engine.strats[0][0][2][key] = value

        # For 'raw_state' min/max values,
        # the only way is to infer from raw Dataset price values (we already got those from data_server):
        if 'raw_state' in self.params['strategy']['state_shape'].keys():
            # Exclude 'volume' from columns we count:
            self.dataset_columns.remove('volume')

            #print(self.params['strategy'])
            #print('self.engine.strats[0][0][2]:', self.engine.strats[0][0][2])
            #print('self.engine.strats[0][0][0].params:', self.engine.strats[0][0][0].params._gettuple())

            # Override with absolute price min and max values:
            self.params['strategy']['state_shape']['raw_state'].low =\
                self.engine.strats[0][0][2]['state_shape']['raw_state'].low =\
                np.zeros(self.params['strategy']['state_shape']['raw_state'].shape) +\
                self.dataset_stat.loc['min', self.dataset_columns].min()

            self.params['strategy']['state_shape']['raw_state'].high = \
                self.engine.strats[0][0][2]['state_shape']['raw_state'].high = \
                np.zeros(self.params['strategy']['state_shape']['raw_state'].shape) + \
                self.dataset_stat.loc['max', self.dataset_columns].max()

            self.log.info(
                'Inferring `state_raw` high/low values form dataset: {:.6f} / {:.6f}.'
                .format(
                    self.dataset_stat.loc['min', self.dataset_columns].min(),
                    self.dataset_stat.loc['max', self.dataset_columns].max()))

        # Set observation space shape from engine/strategy parameters:
        self.observation_space = DictSpace(
            self.params['strategy']['state_shape'])

        self.log.debug('Obs. shape: {}'.format(self.observation_space.spaces))
        #self.log.debug('Obs. min:\n{}\nmax:\n{}'.format(self.observation_space.low, self.observation_space.high))

        # Set action space and corresponding server messages:
        self.action_space = spaces.Discrete(
            len(self.params['strategy']['portfolio_actions']))
        self.server_actions = self.params['strategy']['portfolio_actions']

        # Finally:
        self.server_response = None
        self.env_response = None

        #if not self.data_master:
        self._start_server()
        self.closed = False

        self.log.info('Environment is ready.')
Esempio n. 3
0
    def __init__(self, engine, dataset=None, **kwargs):
        """
        This class requires dataset, strategy, engine instances to be passed explicitly.

        Args:
            dataset(btgym.datafeed):                        BTgymDataDomain instance;
            engine(bt.Cerebro):                             environment simulation engine, any bt.Cerebro subclass,

        Keyword Args:
            network_address=`tcp://127.0.0.1:` (str):       BTGym_server address.
            port=5500 (int):                                network port to use for server - API_shell communication.
            data_master=True (bool):                        let this environment control over data_server;
            data_network_address=`tcp://127.0.0.1:` (str):  data_server address.
            data_port=4999 (int):                           network port to use for server -- data_server communication.
            connect_timeout=20 (int):                       server connection timeout in seconds.
            render_enabled=True (bool):                     enable rendering for this environment;
            render_modes=['human', 'episode'] (list):       `episode` - plotted episode results;
                                                            `human` - raw_state observation.
            **render_args (any):                            any render-related args, passed through to renderer class.
            verbose=0 (int):                                verbosity mode, {0 - WARNING, 1 - INFO, 2 - DEBUG}
            log_level=None (int):                           logbook level {DEBUG=10, INFO=11, NOTICE=12, WARNING=13},
                                                            overrides `verbose` arg;
            log=None (logbook.Logger):                      external logbook logger,
                                                            overrides `log_level` and `verbose` args.
            task=0 (int):                                   environment id


        """
        self.dataset = dataset
        self.engine = engine
        # Parameters and default values:
        self.params = dict(
            engine={},
            dataset={},
            strategy={},
            render={},
        )
        # Update self attributes, remove used kwargs:
        for key in dir(self):
            if key in kwargs.keys():
                setattr(self, key, kwargs.pop(key))

        self.metadata = {'render.modes': self.render_modes}

        # Logging and verbosity control:
        if self.log is None:
            StreamHandler(sys.stdout).push_application()
            if self.log_level is None:
                log_levels = [(0, NOTICE), (1, INFO), (2, DEBUG)]
                self.log_level = WARNING
                for key, value in log_levels:
                    if key == self.verbose:
                        self.log_level = value
            self.log = Logger('BTgymMultiDataShell_{}'.format(self.task), level=self.log_level)

        # Network parameters:
        self.network_address += str(self.port)
        self.data_network_address += str(self.data_port)

        # Set server rendering:
        if self.render_enabled:
            self.renderer = BTgymRendering(self.metadata['render.modes'], log_level=self.log_level, **kwargs)

        else:
            self.renderer = BTgymNullRendering()
            self.log.info('Rendering disabled. Call to render() will return null-plug image.')

        # Append logging:
        self.renderer.log = self.log

        # Update params -1: pull from renderer, remove used kwargs:
        self.params['render'].update(self.renderer.params)
        for key in self.params['render'].keys():
            if key in kwargs.keys():
                _ = kwargs.pop(key)

        if self.data_master:
            try:
                assert self.dataset is not None

            except AssertionError:
                msg = 'Dataset instance shoud be provided for data_master environment.'
                self.log.error(msg)
                raise ValueError(msg)

            # Append logging:
            self.dataset.set_logger(self.log_level, self.task)

            # Update params -2: pull from dataset, remove used kwargs:
            self.params['dataset'].update(self.dataset.params)
            for key in self.params['dataset'].keys():
                if key in kwargs.keys():
                    _ = kwargs.pop(key)

        # Connect/Start data server (and get dataset statistic):
        self.log.info('Connecting data_server...')
        self._start_data_server()
        self.log.info('...done.')
        # After starting data-server we have self.assets attribute, dataset statisitc etc. filled.

        # Define observation space shape, minimum / maximum values and agent action space.
        # Retrieve values from configured engine or...

        # ...Update params -4:
        # Pull strategy defaults to environment params dict :
        for t_key, t_value in self.engine.strats[0][0][0].params._gettuple():
            self.params['strategy'][t_key] = t_value

        # Update it with values from strategy 'passed-to params':
        for key, value in self.engine.strats[0][0][2].items():
            self.params['strategy'][key] = value

        self.asset_names = self.params['strategy']['asset_names']
        self.server_actions = {name: self.params['strategy']['portfolio_actions'] for name in self.asset_names}
        self.cash_name = self.params['strategy']['cash_name']

        self.params['strategy']['initial_action'] = self.get_initial_action()
        self.params['strategy']['initial_portfolio_action'] = self.get_initial_portfolio_action()

        try:
            assert set(self.asset_names).issubset(set(self.data_lines_names))

        except AssertionError:
            msg = 'Assets names should be subset of data_lines names, but got: assets: {}, data_lines: {}'.format(
                set(self.asset_names), set(self.data_lines_names)
            )
            self.log.error(msg)
            raise ValueError(msg)

        # ... Push it all back (don't ask):
        for key, value in self.params['strategy'].items():
            self.engine.strats[0][0][2][key] = value

        # For 'raw_state' min/max values,
        # the only way is to infer from raw Dataset price values (we already got those from data_server):
        if 'raw_state' in self.params['strategy']['state_shape'].keys():
            # Exclude 'volume' from columns we count:
            self.dataset_columns.remove('volume')

            # print(self.params['strategy'])
            # print('self.engine.strats[0][0][2]:', self.engine.strats[0][0][2])
            # print('self.engine.strats[0][0][0].params:', self.engine.strats[0][0][0].params._gettuple())

            # Override with absolute price min and max values:
            self.params['strategy']['state_shape']['raw_state'].low = \
                self.engine.strats[0][0][2]['state_shape']['raw_state'].low = \
                np.zeros(self.params['strategy']['state_shape']['raw_state'].shape) + \
                self.dataset_stat.loc['min', self.dataset_columns].min()

            self.params['strategy']['state_shape']['raw_state'].high = \
                self.engine.strats[0][0][2]['state_shape']['raw_state'].high = \
                np.zeros(self.params['strategy']['state_shape']['raw_state'].shape) + \
                self.dataset_stat.loc['max', self.dataset_columns].max()

            self.log.info('Inferring `state_raw` high/low values form dataset: {:.6f} / {:.6f}.'.
                          format(self.dataset_stat.loc['min', self.dataset_columns].min(),
                                 self.dataset_stat.loc['max', self.dataset_columns].max()))

        # Set observation space shape from engine/strategy parameters:
        self.observation_space = DictSpace(self.params['strategy']['state_shape'])

        self.log.debug('Obs. shape: {}'.format(self.observation_space.spaces))

        # Set action space and corresponding server messages:
        self.action_space = ActionDictSpace(
            base_actions=self.params['strategy']['portfolio_actions'],
            assets=self.asset_names
        )

        self.log.debug('Act. space shape: {}'.format(self.action_space.spaces))

        # Finally:
        self.server_response = None
        self.env_response = None

        # if not self.data_master:
        self._start_server()
        self.closed = False

        self.log.info('Environment is ready.')