def __init__(self, model_file_name=model_file_name, verbose=False, i_mag_lim=30): self.i_mag_lim = i_mag_lim self.model_file_name = model_file_name self.get_model(verbose=False) self.scarlet_param = btk_utils.Scarlet_resid_params(detect_coadd=True) self.iter_scarlet_param = btk_utils.Scarlet_resid_params( detect_centers=False)
def __init__(self, model_file_name=model_file_name, model_name=model_name, stretch=2731, input_model_mapping=True, input_pull=True, verbose=False): self.model_file_name = model_file_name self.model_name = model_name self.get_model(verbose=False) self.scarlet_param = btk_utils.Scarlet_resid_params() self.norm = [0., 1., 0, 1.] self.stretch = stretch self.input_model_mapping = input_model_mapping
def detection_coadd(Args): """Test performance for btk input blends""" norm = [ 1.9844158727667542, 413.83759806375525, 51.2789974336363, 1038.4760551905683 ] count = 15 #4000 # 40000 catalog_name = os.path.join(DATA_PATH, 'OneDegSq.fits') # Define parameters for mrcnn model with btk here resid_model = btk_utils.Resid_btk_model(Args.model_name, Args.model_path, MODEL_DIR, training=False, images_per_gpu=1) # Load parametrs for dataset and load model meas_params = btk_utils.Scarlet_resid_params(detect_coadd=True) resid_model.make_resid_model(catalog_name, count=count, max_number=2, norm_val=norm, meas_params=meas_params) results = [] # np.random.seed(0) for im_id in range(count): iter_detected, sep_detected, true = resid_model.get_detections(im_id) for i in range(len(true)): it_det, it_undet, it_spur = btk.compute_metrics.evaluate_detection( iter_detected[i], true[i]) # print(it_det, it_undet, it_spur) if len(sep_detected[i]) == 0: sep_det, sep_undet, sep_spur = 0, len(true[i]), 0 else: unique_sep_det_cent = np.unique(sep_detected[i], axis=0) sep_det, sep_undet, sep_spur = btk.compute_metrics.evaluate_detection( unique_sep_det_cent, true[i]) # print(sep_det, sep_undet, sep_spur) results.append([ len(true[i]), it_det, it_undet, it_spur, sep_det, sep_undet, sep_spur ]) arr_results = np.array(results).T print("Results: ", np.sum(arr_results, axis=1)) save_file_name = f"sep_det_results_2gal_coadd_temp.txt" np.savetxt(save_file_name, arr_results)