Esempio n. 1
0
    def test4_optimize(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()
        opt.d = 5
        opt.num_workers = 2
        opt.model_path = 'als.bin'
        opt.validation = aux.Option({'topk': 10})
        optimize_option = aux.Option({
            'loss': 'val_rmse',
            'max_trials': 10,
            'deployment': True,
            'start_with_default_parameters': True,
            'space': {
                'd': ['randint', ['d', 10, 20]],
                'reg_u': ['uniform', ['reg_u', 0.1, 0.3]],
                'reg_i': ['uniform', ['reg_i', 0.1, 0.3]],
                'alpha': ['randint', ['alpha', 8, 10]]
            }
        })
        opt.optimize = optimize_option
        opt.evaluation_period = 1
        opt.tensorboard = aux.Option({'root': './tb',
                                      'name': 'als'})

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        als = ALS(opt, data_opt=data_opt)
        als.init_factors()
        als.train()
        default_result = als.get_validation_results()
        als.optimize()
        base_loss = default_result['rmse']  # val_rmse
        optimize_loss = als.get_optimization_data()['best']['val_rmse']
        self.assertTrue(base_loss > optimize_loss)

        als.load('als.bin')
        loss = als.get_validation_results()
        self.assertAlmostEqual(loss['rmse'], optimize_loss)
        os.remove('als.bin')
Esempio n. 2
0
def example1():
    log.set_log_level(log.DEBUG)
    als_option = ALSOption().get_default_option()
    als_option.validation = aux.Option({'topk': 10})
    data_option = MatrixMarketOptions().get_default_option()
    data_option.input.main = '../tests/ext/ml-100k/main'
    data_option.input.iid = '../tests/ext/ml-100k/iid'

    als = ALS(als_option, data_opt=data_option)
    als.initialize()
    als.train()
    print('MovieLens 100k metrics for validations\n%s' % json.dumps(als.get_validation_results(), indent=2))

    print('Similar movies to Star_Wars_(1977)')
    for rank, (movie_name, score) in enumerate(als.most_similar('49.Star_Wars_(1977)')):
        print(f'{rank + 1:02d}. {score:.3f} {movie_name}')

    print('Run hyper parameter optimization for val_ndcg...')
    als.opt.num_workers = 4
    als.opt.evaluation_period = 10
    als.opt.optimize = aux.Option({
        'loss': 'val_ndcg',
        'max_trials': 100,
        'deployment': True,
        'start_with_default_parameters': True,
        'space': {
            'd': ['randint', ['d', 10, 128]],
            'reg_u': ['uniform', ['reg_u', 0.1, 1.0]],
            'reg_i': ['uniform', ['reg_i', 0.1, 1.0]],
            'alpha': ['randint', ['alpha', 1, 10]],
        }
    })
    log.set_log_level(log.INFO)
    als.opt.model_path = './example1.ml100k.als.optimize.bin'
    print(json.dumps({'alpha': als.opt.alpha, 'd': als.opt.d,
                      'reg_u': als.opt.reg_u, 'reg_i': als.opt.reg_i}, indent=2))
    als.optimize()
    als.load('./example1.ml100k.als.optimize.bin')

    print('Similar movies to Star_Wars_(1977)')
    for rank, (movie_name, score) in enumerate(als.most_similar('49.Star_Wars_(1977)')):
        print(f'{rank + 1:02d}. {score:.3f} {movie_name}')

    optimization_res = als.get_optimization_data()
    best_parameters = optimization_res['best_parameters']

    print(json.dumps(optimization_res['best'], indent=2))
    print(json.dumps({'alpha': int(best_parameters['alpha']), 'd': int(best_parameters['d']),
                      'reg_u': best_parameters['reg_u'], 'reg_i': best_parameters['reg_i']}, indent=2))
Esempio n. 3
0
    def test00_tensorboard(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()
        opt.d = 5
        opt.validation = aux.Option({'topk': 10})
        opt.tensorboard = aux.Option({'root': './tb', 'name': 'als'})

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        results = als.get_validation_results()
        self.assertTrue(results['ndcg'] > 0.025)
        self.assertTrue(results['map'] > 0.015)