Esempio n. 1
0
    def test07_topk_pool(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = BPRMFOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        model = BPRMF(opt, data_opt=data_opt)
        model.initialize()
        model.train()
        par = ParBPRMF(model)

        pool = np.array([i for i in range(5)], dtype=np.int32)
        model.build_userid_map()
        all_keys = model._idmanager.userids[::][:10]
        naive = model.topk_recommendation(all_keys, topk=10, pool=pool)
        qkeys1, topks1, scores1 = par.topk_recommendation(all_keys, topk=10, pool=pool, repr=True)
        for q, t in zip(qkeys1, topks1):
            self.assertEqual(naive[q], t)
Esempio n. 2
0
    def test03_most_similar(self):
        set_log_level(1)
        data_opt = self.get_ml100k_mm_opt()
        opt = BPRMFOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        bpr = BPRMF(opt, data_opt=data_opt)
        bpr.initialize()
        bpr.train()
        bpr.build_itemid_map()
        parbpr = ParBPRMF(bpr)

        all_keys = bpr._idmanager.itemids[::]
        start_t = time.time()
        [bpr.most_similar(k, topk=10) for k in all_keys]
        naive_elapsed = time.time() - start_t

        parbpr.num_workers = 4
        start_t = time.time()
        parbpr.most_similar(all_keys, topk=10, repr=True)
        parbpr_elapsed = time.time() - start_t

        self.assertTrue(naive_elapsed > parbpr_elapsed * 3.0)