Esempio n. 1
0
def run_algorithm(algorithm="buffer_kd_tree", tree_depth=None, leaf_size=None):

    nbrs = NearestNeighbors(n_neighbors=n_neighbors, \
                            algorithm=algorithm, \
                            tree_depth=tree_depth, \
                            leaf_size=leaf_size, \
                            float_type=float_type, \
                            n_jobs=n_jobs, \
                            plat_dev_ids=plat_dev_ids, \
                            verbose=verbose)

    start_time = time.time()
    nbrs.fit(Xtrain)
    end_time = time.time()
    print("Fitting time: %f" % (end_time - start_time))

    start_time = time.time()
    dists, inds = nbrs.kneighbors(Xtest)
    end_time = time.time()
    print("Testing time: %f" % (end_time - start_time))
Esempio n. 2
0
def run_algorithm(algorithm="buffer_kd_tree", tree_depth=None, leaf_size=None):

    nbrs = NearestNeighbors(n_neighbors=n_neighbors, 
                            algorithm=algorithm, 
                            tree_depth=tree_depth, 
                            leaf_size=leaf_size, 
                            float_type=float_type, 
                            n_jobs=n_jobs, 
                            plat_dev_ids=plat_dev_ids, 
                            verbose=verbose)

    start_time = time.time()
    nbrs.fit(Xtrain)
    end_time = time.time()
    print("Fitting time: %f" % (end_time - start_time))

    start_time = time.time()
    _, _ = nbrs.kneighbors(Xtest)
    end_time = time.time()
    print("Testing time: %f" % (end_time - start_time))
Esempio n. 3
0
# Authors: Fabian Gieseke
# Licence: GNU GPL (v2)

import numpy
from bufferkdtree import NearestNeighbors

n_neighbors = 10
plat_dev_ids = {0: [0]}
n_jobs = 1
verbose = 1

X = numpy.random.uniform(low=-1, high=1, size=(10000, 10))

# (1) apply buffer k-d tree implementation
nbrs_buffer_kd_tree = NearestNeighbors(algorithm="buffer_kd_tree", \
                        tree_depth=9, \
                        plat_dev_ids=plat_dev_ids, \
                        verbose=verbose)
nbrs_buffer_kd_tree.fit(X)
dists, inds = nbrs_buffer_kd_tree.kneighbors(X, n_neighbors=n_neighbors)
print("\nbuffer_kd_tree output\n" + str(dists[0]))

# (2) apply brute-force implementation
nbrs_brute = NearestNeighbors(algorithm="brute", \
                        plat_dev_ids=plat_dev_ids, \
                        verbose=verbose)
nbrs_brute.fit(X)
dists, inds = nbrs_brute.kneighbors(X, n_neighbors=n_neighbors)
print("\nbrute output\n" + str(dists[0]))

# (3) apply k-d tree mplementation
nbrs_kd_tree = NearestNeighbors(algorithm="kd_tree", \
Esempio n. 4
0
# https://github.com/gieseke/bufferkdtree/tree/master/examples
import time
from bufferkdtree import NearestNeighbors
import generate

Xtrain, Ytrain, Xtest = generate.get_data_set(data_set="psf_model_mag",
                                              NUM_TRAIN=1000000,
                                              NUM_TEST=1000000)

n_jobs = 1
print("Using n_jobs=%i" % n_jobs)
nbrs = NearestNeighbors(n_neighbors=10,
                        algorithm="kd_tree",
                        leaf_size=32,
                        n_jobs=n_jobs)
nbrs.fit(Xtrain)

start_time = time.time()
_, _ = nbrs.kneighbors(Xtest)
end_time = time.time()
print("Testing time: %f" % (end_time - start_time))
Esempio n. 5
0
"""
print(__doc__)

import numpy
from bufferkdtree import NearestNeighbors

n_neighbors = 10
plat_dev_ids = {0:[0]}
n_jobs = 1
verbose = 1

X = numpy.random.uniform(low=-1, high=1, size=(10000,10))

# (1) apply buffer k-d tree implementation
nbrs_buffer_kd_tree = NearestNeighbors(algorithm="buffer_kd_tree", 
                        tree_depth=9, 
                        plat_dev_ids=plat_dev_ids, 
                        verbose=verbose)    
nbrs_buffer_kd_tree.fit(X)
dists, inds = nbrs_buffer_kd_tree.kneighbors(X, n_neighbors=n_neighbors)
print("\nbuffer_kd_tree output\n" + str(dists[0]))

# (2) apply brute-force implementation
nbrs_brute = NearestNeighbors(algorithm="brute", 
                        plat_dev_ids=plat_dev_ids, 
                        verbose=verbose)    
nbrs_brute.fit(X)
dists, inds = nbrs_brute.kneighbors(X, n_neighbors=n_neighbors)
print("\nbrute output\n" + str(dists[0]))

# (3) apply k-d tree mplementation
nbrs_kd_tree = NearestNeighbors(algorithm="kd_tree",