Esempio n. 1
0
    def __init__(self,
                 network,
                 obs_dim,
                 num_actions,
                 gamma=0.9,
                 lam=0.95,
                 reuse=None):
        self.num_actions = num_actions
        self.gamma = gamma
        self.lam = lam
        self.t = 0
        self.obss = []
        self.actions = []
        self.rewards = []
        self.values = []
        self.next_values = []

        act, train, update_old, backup_current = build_graph.build_train(
            network=network,
            obs_dim=obs_dim,
            num_actions=num_actions,
            gamma=gamma,
            reuse=reuse)
        self._act = act
        self._train = train
        self._update_old = update_old
        self._backup_current = backup_current
Esempio n. 2
0
    def __init__(self,
                 actor,
                 critic,
                 obs_dim,
                 num_actions,replay_buffer,
                 batch_size=4,
                 sequence_length=8,
                 episode_update=True,
                 gamma=0.9):
        self.batch_size = batch_size
        self.sequence_length = sequence_length
        self.episode_update = episode_update
        self.num_actions = num_actions
        self.gamma = gamma
        self.obs_dim = obs_dim
        self.last_obs = None
        self.t = 0
        self.replay_buffer = replay_buffer
        self.actor_lstm_state = np.zeros((2, 1, 64), dtype=np.float32)

        self._act,\
        self._train_actor,\
        self._train_critic,\
        self._update_actor_target,\
        self._update_critic_target = build_graph.build_train(
            actor=actor,
            critic=critic,
            obs_dim=obs_dim,
            num_actions=num_actions,
            batch_size=batch_size,
            gamma=gamma
        )
Esempio n. 3
0
    def __init__(self,
                 actor,
                 critic,
                 obs_dim,
                 num_actions,
                 replay_buffer,
                 batch_size=16,
                 gamma=0.9):
        self.batch_size = batch_size
        self.num_actions = num_actions
        self.gamma = gamma
        self.last_obs = None
        self.t = 0
        self.exploration = 3
        self.replay_buffer = replay_buffer

        self._act,\
        self._train_actor,\
        self._train_critic,\
        self._update_actor_target,\
        self._update_critic_target = build_graph.build_train(
            actor=actor,
            critic=critic,
            obs_dim=obs_dim,
            num_actions=num_actions,
            gamma=gamma
        )
Esempio n. 4
0
    def __init__(self, config, env_creator):
        self.config = config
        self.local_timestep = 0
        self.episode_rewards = [0.0]
        self.episode_lengths = [0.0]

        if "cartpole" in self.config["env_config"]:
            self.env = env_creator(self.config["env_config"])
        else:
            self.env = wrap_deepmind(
                env_creator(self.config["env_config"]),
                clip_rewards=False, frame_stack=True, scale=True)
        self.obs = self.env.reset()

        self.sess = U.make_session()
        self.sess.__enter__()

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph
        observation_space_shape = self.env.observation_space.shape
        def make_obs_ph(name):
            return BatchInput(observation_space_shape, name=name)

        if "cartpole" in self.config["env_config"]:
            q_func = models.mlp([64])
        else:
            q_func = models.cnn_to_mlp(
                convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
                hiddens=[256],
                dueling=True,
            )

        act, self.train, self.update_target, debug = build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=self.env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=self.config["lr"]),
            gamma=self.config["gamma"],
            grad_norm_clipping=10,
            param_noise=False
        )

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': self.env.action_space.n,
        }

        self.act = ActWrapper(act, act_params)

        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(
            schedule_timesteps=int(self.config["exploration_fraction"] * self.config["schedule_max_timesteps"]),
            initial_p=1.0,
            final_p=self.config["exploration_final_eps"])

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()
Esempio n. 5
0
    def __init__(self,
                network,
                actions,
                optimizer,
                nenvs,
                gamma=0.9,
                lstm_unit=256,
                time_horizon=128,
                policy_factor=1.0,
                value_factor=0.5,
                entropy_factor=0.01,
                epsilon=0.2,
                lam=0.95,
                state_shape=[84, 84, 1],
                phi=lambda s: s,
                continuous=False,
                name='ppo'):
        self.actions = actions
        self.gamma = gamma
        self.lam = lam
        self.name = name
        self.nenvs = nenvs
        self.time_horizon = time_horizon
        self.state_shape = state_shape
        self.phi = phi
        self.continuous = continuous

        self._act,\
        self._train,\
        self._update_old,\
        self._backup_current = build_graph.build_train(
            network=network,
            num_actions=num_actions,
            optimizer=optimizer,
            nenvs=nenvs,
            lstm_unit=lstm_unit,
            state_shape=state_shape,
            value_factor=value_factor,
            policy_factor=policy_factor,
            entropy_factor=entropy_factor,
            epsilon=epsilon,
            gamma=gamma,
            reuse=reuse,
            scope=name
        )
        self.initial_state = np.zeros((nenvs, lstm_unit), np.float32)
        self.rnn_state0 = self.initial_state
        self.rnn_state1 = self.initial_state
        self.last_obs = None
        self.last_action = None
        self.last_value = None
        self.rollouts = [Rollout() for _ in range(nenvs)]
        self.t = 0
Esempio n. 6
0
    def __init__(self,
                 network,
                 dnds,
                 actions,
                 state_shape,
                 replay_buffer,
                 exploration,
                 constants,
                 phi=lambda s: s,
                 run_options=None,
                 run_metadata=None):
        self.actions = actions
        self.num_actions = len(actions)

        self.replay_buffer = replay_buffer
        self.exploration = exploration
        self.constants = constants
        self.dnds = dnds
        self.phi = phi
        self.cache = Cache(constants.N_STEP, constants.GAMMA)

        self.last_obs = None
        self.t = 0
        self.t_in_episode = 0

        # TODO: remove
        self.run_options = run_options
        self.run_metadata = run_metadata

        if constants.OPTIMIZER == 'adam':
            optimizer = tf.train.AdamOptimizer(constants.LR)
        else:
            optimizer = tf.train.RMSPropOptimizer(learning_rate=constants.LR,
                                                  momentum=constants.MOMENTUM,
                                                  epsilon=constants.EPSILON)

        self._act,\
        self._write,\
        self._train = build_graph.build_train(
            encode=network,
            num_actions=self.num_actions,
            state_shape=state_shape,
            optimizer=optimizer,
            dnds=self.dnds,
            key_size=constants.DND_KEY_SIZE,
            grad_clipping=constants.GRAD_CLIPPING,
            run_options=self.run_options,
            run_metadata=self.run_metadata
        )
Esempio n. 7
0
    def __init__(self,
                 model,
                 actions,
                 optimizer,
                 gamma=0.99,
                 lstm_unit=256,
                 time_horizon=5,
                 policy_factor=1.0,
                 value_factor=0.5,
                 entropy_factor=0.01,
                 grad_clip=40.0,
                 state_shape=[84, 84, 1],
                 phi=lambda s: s,
                 name='global'):
        self.actions = actions
        self.gamma = gamma
        self.name = name
        self.time_horizon = time_horizon
        self.state_shape = state_shape
        self.phi = phi

        self._act,\
        self._train,\
        self._update_local = build_graph.build_train(
            model=model,
            num_actions=len(actions),
            optimizer=optimizer,
            lstm_unit=lstm_unit,
            state_shape=state_shape,
            grad_clip=grad_clip,
            policy_factor=policy_factor,
            value_factor=value_factor,
            entropy_factor=entropy_factor,
            scope=name
        )

        self.initial_state = np.zeros((1, lstm_unit), np.float32)
        self.rnn_state0 = self.initial_state
        self.rnn_state1 = self.initial_state
        self.last_obs = None
        self.last_action = None
        self.last_value = None

        self.rollout = Rollout()
        self.t = 0
Esempio n. 8
0
    def __init__(self, model, dnds, num_actions, name='global', lr=2.5e-4,
                 gamma=0.99, plotter=None):
        self.num_actions = num_actions
        self.gamma = gamma
        self.t = 0
        self.name = name
        self.dnds = dnds
        self.plotter = plotter

        act, train, update_local, action_dist, state_value = build_graph.build_train(
            model=model,
            dnds=dnds,
            num_actions=num_actions,
            optimizer=tf.train.RMSPropOptimizer(learning_rate=7e-4, decay=.99, epsilon=0.1),
            scope=name
        )

        self._act = act
        self._train = train
        self._update_local = update_local
        self._action_dist = action_dist
        self._state_value = state_value

        self.initial_state = np.zeros((1, 258), np.float32)
        self.rnn_state0 = self.initial_state
        self.rnn_state1 = self.initial_state
        self.last_obs = None
        self.last_reward = None
        self.last_action = None
        self.last_value = None

        self.states = []
        self.rewards = []
        self.actions = []
        self.values = []
        self.encodes = []
        self.rotations = []
        self.movements = []
        self.positions = []
        self.directions = []
        self.position_changes = []
        self.pos_track = PositionTrack()
Esempio n. 9
0
    def __init__(self,
                 model,
                 icm_model,
                 num_actions,
                 name='global',
                 lr=2.5e-4,
                 gamma=0.99):
        self.num_actions = num_actions
        self.gamma = gamma
        self.t = 0
        self.name = name

        act, train, update_local, state_value, bonus = build_graph.build_train(
            model=model,
            icm_model=icm_model,
            num_actions=num_actions,
            optimizer=tf.train.AdamOptimizer(learning_rate=1e-4),
            scope=name)

        self._act = act
        self._train = train
        self._update_local = update_local
        self._state_value = state_value
        self._bonus = bonus

        self.initial_state = np.zeros((1, 256), np.float32)
        self.rnn_state0 = self.initial_state
        self.rnn_state1 = self.initial_state
        self.last_obs = None
        self.last_reward = None
        self.last_action = None
        self.last_value = None

        self.states = []
        self.next_states = []
        self.rewards = []
        self.actions = []
        self.values = []
Esempio n. 10
0
    def __init__(self,
                 q_func,
                 actions,
                 state_shape,
                 replay_buffer,
                 exploration,
                 optimizer,
                 gamma,
                 grad_norm_clipping,
                 phi=lambda s: s,
                 batch_size=32,
                 train_freq=4,
                 learning_starts=1e4,
                 target_network_update_freq=1e4):
        self.batch_size = batch_size
        self.train_freq = train_freq
        self.actions = actions
        self.learning_starts = learning_starts
        self.target_network_update_freq = target_network_update_freq
        self.exploration = exploration
        self.replay_buffer = replay_buffer
        self.phi = phi

        self._act,\
        self._train,\
        self._update_target,\
        self._q_values = build_graph.build_train(
            q_func=q_func,
            num_actions=len(actions),
            state_shape=state_shape,
            optimizer=optimizer,
            gamma=gamma,
            grad_norm_clipping=grad_norm_clipping
        )

        self.last_obs = None
        self.t = 0
Esempio n. 11
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=100000,
          exploration_fraction=0.1,
          exploration_final_eps=0.1,
          train_freq=1,
          batch_size=64,
          print_freq=1,
          eval_freq=2500,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          csv_path="results.csv",
          method_type="baseline",
          **network_kwargs):
    """Train a deepr model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepr.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepr/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    #q_func = build_q_func(network, **network_kwargs)
    q_func = build_q_func(mlp(num_layers=4, num_hidden=64), **network_kwargs)
    #q_func = build_q_func(mlp(num_layers=2, num_hidden=64, activation=tf.nn.relu), **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(
        schedule_timesteps=int(exploration_fraction * total_timesteps),
        #initial_p=1.0,
        initial_p=exploration_final_eps,
        final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    eval_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        csvfile = open(csv_path, 'w', newline='')
        fieldnames = ['STEPS', 'REWARD']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()

        for t in range(total_timesteps + 1):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                #update_eps = exploration.value(t)
                update_eps = exploration_final_eps
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action_mask = get_mask(env, method_type)
            a = act(np.array(obs)[None],
                    unused_actions_neginf_mask=action_mask,
                    update_eps=update_eps,
                    **kwargs)[0]

            env_action = a
            reset = False
            new_obs, rew, done, _ = env.step(env_action)

            eval_rewards[-1] += rew

            action_mask_p = get_mask(env, method_type)
            # Shaping
            if method_type == 'shaping':

                ## look-ahead shaping
                ap = act(np.array(new_obs)[None],
                         unused_actions_neginf_mask=action_mask_p,
                         stochastic=False)[0]
                f = action_mask_p[ap] - action_mask[a]
                rew = rew + f

            # Store transition in the replay buffer.
            #replay_buffer.add(obs, a, rew, new_obs, float(done), action_mask_p)
            if method_type != 'shaping':
                replay_buffer.add(obs, a, rew, new_obs, float(done),
                                  np.zeros(env.action_space.n))
            else:
                replay_buffer.add(obs, a, rew, new_obs, float(done),
                                  action_mask_p)
            obs = new_obs

            if t % eval_freq == 0:
                eval_rewards.append(0.0)

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones, masks_tp1 = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights, masks_tp1)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_eval_reward = round(np.mean(eval_rewards[-1 - print_freq:-1]),
                                     1)
            num_evals = len(eval_rewards)
            if t > 0 and t % eval_freq == 0 and print_freq is not None and t % (
                    print_freq * eval_freq) == 0:
                #if done and print_freq is not None and len(eval_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("evals", num_evals)
                logger.record_tabular("average reward in this eval",
                                      mean_eval_reward / (eval_freq))
                logger.record_tabular("total reward in this eval",
                                      mean_eval_reward)
                logger.dump_tabular()

                writer.writerow({
                    "STEPS": t,
                    "REWARD": mean_eval_reward / (eval_freq)
                })
                csvfile.flush()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_evals > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_eval_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_eval_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_eval_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Esempio n. 12
0
    def __init__(self,
                 model,
                 num_actions,
                 nenvs,
                 lr,
                 epsilon,
                 gamma=0.99,
                 lam=0.95,
                 lstm_unit=256,
                 value_factor=0.5,
                 entropy_factor=0.01,
                 time_horizon=128,
                 batch_size=32,
                 epoch=3,
                 grad_clip=40.0,
                 state_shape=[84, 84, 1],
                 phi=lambda s: s,
                 use_lstm=False,
                 continuous=False,
                 upper_bound=1.0,
                 name='ppo',
                 training=True):
        self.num_actions = num_actions
        self.gamma = gamma
        self.lam = lam
        self.lstm_unit = lstm_unit
        self.name = name
        self.state_shape = state_shape
        self.nenvs = nenvs
        self.lr = lr
        self.epsilon = epsilon
        self.time_horizon = time_horizon
        self.batch_size = batch_size
        self.epoch = epoch
        self.phi = phi 
        self.use_lstm = use_lstm
        self.continuous = continuous
        self.upper_bound = upper_bound
        self.episode_experience = []
        self.all_experience = []
        self.ep_count = 0

        self._act, self._train = build_train(
            model=model,
            num_actions=num_actions,
            lr=lr.get_variable(),
            epsilon=epsilon.get_variable(),
            nenvs=nenvs,
            step_size=batch_size,
            lstm_unit=lstm_unit,
            state_shape=state_shape,
            grad_clip=grad_clip,
            value_factor=value_factor,
            entropy_factor=entropy_factor,
            continuous=continuous,
            scope=name
        )

        self.initial_state = np.zeros((nenvs, lstm_unit*2), np.float32)
        self.rnn_state = self.initial_state

        self.state_tm1 = dict(obs=None, action=None, value=None,
                              log_probs=None, done=None, rnn_state=None)
        self.rollouts = [Rollout() for _ in range(nenvs)]
        self.t = 0
        self.training = training
Esempio n. 13
0
def learn(env,
          q_func,
          lr=5e-4,
          lr_decay_factor = 0.99,
          lr_growth_factor = 1.01,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path = None,
          learning_starts=1000,
          gamma=0.9,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          callback=None,
          varTH=1e-05,
          noise = 0.0,
          epoch_steps=20000,
          alg='adfq',
          gpu_memory=1.0,
          act_policy='egreedy',
          save_dir='.',
          nb_test_steps = 10000,
          scope = 'deepadfq',
          test_eps = 0.05,
          init_t = 0,
          render = False,
          map_name = None,
          num_targets = 1,
          im_size=None,
          ):

    """Train a deepadfq model.
    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    varTH : variance threshold
    noise : noise for stochastic cases
    alg : 'adfq' or 'adfq-v2'
    gpu_memory : a fraction of a gpu memory when running multiple programs in the same gpu 
    act_policy : action policy, 'egreedy' or 'bayesian'
    save_dir : path for saving results
    nb_test_steps : step bound in evaluation

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines0/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.per_process_gpu_memory_fraction = gpu_memory
    config.gpu_options.polling_inactive_delay_msecs = 25
    sess = tf.Session(config=config)
    sess.__enter__()
    
    num_actions=env.action_space.n
    varTH = np.float32(varTH)
    adfq_func = posterior_adfq if alg == 'adfq' else posterior_adfq_v2
    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    # observation_space_shape = env.observation_space.shape
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    act, act_test, q_target_vals, train, update_target, lr_decay_op, lr_growth_op = build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer_f=tf.train.AdamOptimizer,
        gamma=gamma,
        grad_norm_clipping=10,
        varTH=varTH,
        act_policy=act_policy,
        scope=scope,
        test_eps=test_eps,
        learning_rate = lr,
        learning_rate_decay_factor = lr_decay_factor,
        learning_rate_growth_factor = lr_growth_factor,
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)
    
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    timelimit_env = env
    while( not hasattr(timelimit_env, '_elapsed_steps')):
        timelimit_env = timelimit_env.env
    if timelimit_env.env.spec:
        env_id = timelimit_env.env.spec.id
    else:
        env_id = timelimit_env.env.id        
    obs = env.reset()
    reset = True
    num_eps = 0
    # recording
    records = {'q_mean':[], 'q_sd':[], 'loss':[], 'online_reward':[], 
                    'test_reward':[], 'learning_rate':[], 'time':[], 'eval_value':[]}

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td
        model_saved = False
        model_file = os.path.join(td, "model")
        if tf.train.latest_checkpoint(td) is not None:
            load_state(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
            learning_starts += init_t

        ep_losses, ep_means, ep_sds, losses, means, sds = [], [], [], [], [], []
        ep_mean_err, ep_sd_err, mean_errs, sd_errs = [], [], [], []
        checkpt_loss = []
        curr_lr = lr
        s_time = time.time()
        
        print("===== LEARNING STARTS =====")
        for t in range(init_t,max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            update_eps = exploration.value(t)
            
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, info = env.step(env_action) 
            # Store transition in the replay buffer.
            if timelimit_env._elapsed_steps < timelimit_env._max_episode_steps:
                replay_buffer.add(obs, action, rew, new_obs, float(done))
            else:
                replay_buffer.add(obs, action, rew, new_obs, float(not done))

            obs = new_obs
            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                reset = True
                num_eps += 1
                episode_rewards.append(0.0)
                
                if losses:
                    ep_losses.append(np.mean(losses))
                    ep_means.append(np.mean(means))
                    ep_sds.append(np.mean(sds))
                    losses, means, sds = [], [], []

                    ep_mean_err.append(np.mean(mean_errs))
                    ep_sd_err.append(np.mean(sd_errs))
                    mean_errs , sd_errs = [], []

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                stats_t = q_target_vals(obses_t)[0]
                stats_tp1 = q_target_vals(obses_tp1)[0]

                ind = np.arange(batch_size)
                mean_t = stats_t[ind,actions.astype(int)]
                sd_t = np.exp(-stats_t[ind, actions.astype(int)+num_actions])
                mean_tp1 = stats_tp1[:,:num_actions]
                sd_tp1 = np.exp(-stats_tp1[:,num_actions:])

                var_t = np.maximum(varTH, np.square(sd_t))
                var_tp1 = np.maximum(varTH, np.square(sd_tp1))
                target_mean, target_var, _ = adfq_func(mean_tp1, var_tp1, mean_t, var_t, rewards, gamma,
                        terminal=dones, asymptotic=False, batch=True, noise=noise, varTH = varTH)

                target_mean = np.reshape(target_mean, (-1))
                target_sd = np.reshape(np.sqrt(target_var), (-1))
                loss, m_err, s_err, curr_lr = train(obses_t, actions, target_mean, target_sd, weights)
                
                losses.append(loss)
                means.append(np.mean(mean_tp1))
                sds.append(np.mean(sd_tp1))
                mean_errs.append(np.mean(np.abs(m_err)))
                sd_errs.append(np.mean(np.abs(s_err)))

                if prioritized_replay:
                    new_priorities = np.abs(m_err) + np.abs(s_err) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)
                if render:
                    env.render(traj_num=num_eps)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)

            if (t+1) % (epoch_steps/2) == 0 and (t+1) > learning_starts:
                if ep_losses: 
                    mean_loss = np.float16(np.mean(ep_losses))
                    if len(checkpt_loss) > 2 and mean_loss > np.float16(max(checkpt_loss[-3:])) and lr_decay_factor < 1.0:
                        sess.run(lr_decay_op)
                        print("Learning rate decayed due to an increase in loss: %.4f -> %.4f"%(np.float16(max(checkpt_loss[-3:])),mean_loss)) 
                    elif len(checkpt_loss) > 2 and mean_loss < np.float16(min(checkpt_loss[-3:])) and lr_growth_factor > 1.0:
                        sess.run(lr_growth_op)
                        print("Learning rate grown due to a decrease in loss: %.4f -> %.4f"%( np.float16(min(checkpt_loss[-3:])),mean_loss))
                    checkpt_loss.append(mean_loss)

            if (t+1) % epoch_steps == 0 and (t+1) > learning_starts:
                records['time'].append(time.time() - s_time)
                
                test_reward, eval_value = test(env_id, act_test, nb_test_steps=nb_test_steps, map_name=map_name, num_targets=num_targets)
                records['test_reward'].append(test_reward)
                records['eval_value'].append(eval_value)
                records['q_mean'].append(np.mean(ep_means))
                records['q_sd'].append(np.mean(ep_sds))
                records['loss'].append(np.mean(ep_losses))
                records['online_reward'].append(round(np.mean(episode_rewards[-101:-1]), 1))
                records['learning_rate'].append(curr_lr)
                pickle.dump(records, open(os.path.join(save_dir,"records.pkl"),"wb"))
                print("==== EPOCH %d ==="%((t+1)/epoch_steps))
                print(tabulate([[k,v[-1]] for (k,v) in records.items()]))
                s_time = time.time()

            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.record_tabular("averaged loss", np.mean(ep_losses[-print_freq:]))
                logger.record_tabular("averaged output mean", np.mean(ep_means[-print_freq:]))
                logger.record_tabular("averaged output sd", np.mean(ep_sds[-print_freq:]))
                logger.record_tabular("averaged error mean", np.mean(ep_mean_err[-print_freq:]))
                logger.record_tabular("averaged error sds", np.mean(ep_sd_err[-print_freq:]))
                logger.record_tabular("learning rate", curr_lr)
                logger.dump_tabular()

            if (checkpoint_freq is not None and (t+1) > learning_starts and (t+1) % checkpoint_freq == 0): #num_episodes > 100 and 
                print("Saving model to model_%d.pkl"%(t+1))
                act.save(os.path.join(save_dir,"model_"+str(t+1)+".pkl"))
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))

                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act, records
Esempio n. 14
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          callback=None,
          tf_log_dir=None,
          tf_flush_freq=100,
          tf_model_freq=10000
          ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()

    # inject some Tensorboard usage.
    tf_summary_writer = tf.summary.FileWriter('{}/summary'.format(tf_log_dir)) if tf_log_dir is not None else None
    tf_saver = tf.train.Saver(max_to_keep=10) if tf_log_dir is not None else None

    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        print('====', model_file)
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            reset = False
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done and tf_summary_writer is not None:
                summary = tf.Summary()
                summary.value.add(tag='info/episode_reward', simple_value=float(episode_rewards[-1]))
                summary.value.add(tag='info/esp', simple_value=float(update_eps))
                tf_summary_writer.add_summary(summary, t)

            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

                if tf_summary_writer is not None:
                    summary = tf.Summary()
                    summary.value.add(tag='model/loss', simple_value=float(td_errors[0]))  # TODO: mean the loss
                    tf_summary_writer.add_summary(summary, t)

            if t % tf_flush_freq == 0:
                tf_summary_writer.flush()

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                        logger.log("Saving model path: {}".format(model_file))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
            if tf_saver is not None and t % tf_model_freq == 0:
                assert tf_log_dir is not None
                tf_saver.save(sess=sess, save_path='{}/model/model'.format(tf_log_dir), global_step=t)

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
Esempio n. 15
0
def learn(
    env,
    q_func,
    lr=5e-4,
    lr_decay_factor=0.99,
    lr_growth_factor=1.01,
    max_timesteps=100000,
    buffer_size=50000,
    exploration_fraction=0.1,
    exploration_final_eps=0.02,
    train_freq=1,
    batch_size=32,
    print_freq=100,
    checkpoint_freq=10000,
    checkpoint_path=None,
    learning_starts=1000,
    gamma=0.9,
    target_network_update_freq=500,
    prioritized_replay=False,
    prioritized_replay_alpha=0.6,
    prioritized_replay_beta0=0.4,
    prioritized_replay_beta_iters=None,
    prioritized_replay_eps=1e-6,
    callback=None,
    scope='deepadfq',
    alg='adfq',
    sdMin=1e-5,
    sdMax=1e5,
    noise=0.0,
    act_policy='egreedy',
    epoch_steps=20000,
    eval_logger=None,
    save_dir='.',
    test_eps=0.05,
    init_t=0,
    gpu_memory=1.0,
    render=False,
    **kwargs,
):
    """Train a deepadfq model.
    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: float
        update the target network every `target_network_update_freq` steps.
        If it is less than 1, it performs the soft target network update with
        the given rate.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    scope : str
        scope of the network.
    alg : str
        'adfq' or 'adfq-v2'.
    sdMin, sdMix : float
        The minimum and maximum values for the standard deviations.
    noise : flot
        noise for stochastic cases.
    act_policy : str
        action policy, 'egreedy' or 'bayesian'.
    epoch_step : int
        the number of steps per epoch.
    eval_logger : Logger()
        the Logger() class object under deep_adfq folder.
    save_dir : str
        path for saving results.
    test_eps : float
        epsilon of the epsilon greedy action policy during testing.
    init_t : int
        an initial learning step if you start training from a pre-trained model.
    gpu_memory : float
        a fraction of a gpu memory when running multiple programs in the same gpu.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines0/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model
    config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
    config.gpu_options.per_process_gpu_memory_fraction = gpu_memory
    config.gpu_options.polling_inactive_delay_msecs = 25
    sess = tf.compat.v1.Session(config=config)
    sess.__enter__()

    num_actions = env.action_space.n
    adfq_func = posterior_adfq if alg == 'adfq' else posterior_adfq_v2
    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    # observation_space_shape = env.observation_space.shape
    observation_space_shape = env.observation_space.shape

    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    target_network_update_rate = np.minimum(target_network_update_freq, 1.0)
    target_network_update_freq = np.maximum(target_network_update_freq, 1.0)

    act, act_test, q_target_vals, train, update_target, lr_decay_op, lr_growth_op = build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer_f=tf.compat.v1.train.AdamOptimizer,
        grad_norm_clipping=10,
        sdMin=sdMin,
        sdMax=sdMax,
        act_policy=act_policy,
        scope=scope,
        test_eps=test_eps,
        lr_init=lr,
        lr_decay_factor=lr_decay_factor,
        lr_growth_factor=lr_growth_factor,
        reuse=tf.compat.v1.AUTO_REUSE,
        tau=target_network_update_rate,
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)
    file_writer = tf.compat.v1.summary.FileWriter(save_dir, sess.graph)
    U.initialize()
    update_target()

    saved_mean_reward = None
    timelimit_env = env
    while (not hasattr(timelimit_env, '_elapsed_steps')):
        timelimit_env = timelimit_env.env
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td
        model_saved = False
        model_file = os.path.join(td, "model")
        if tf.train.latest_checkpoint(td) is not None:
            load_state(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
            learning_starts += init_t

        checkpt_loss = []
        eval_logger.log_epoch(act_test)

        for t in range(init_t, max_timesteps):
            if callback is not None and callback(locals(), globals()):
                break
            # Take action and update exploration to the newest value
            kwargs_act = {}
            update_eps = exploration.value(t)

            action = act(np.array(obs)[None],
                         update_eps=update_eps,
                         **kwargs_act)[0]
            env_action = action
            reset = False
            new_obs, rew, done, info = env.step(env_action)
            # Store transition in the replay buffer.
            if timelimit_env._elapsed_steps < timelimit_env._max_episode_steps:
                replay_buffer.add(obs, action, rew, new_obs, float(done))
            else:
                replay_buffer.add(obs, action, rew, new_obs, float(not done))

            obs = new_obs
            eval_logger.log_reward(rew)
            if done:
                obs = env.reset()
                reset = True
                eval_logger.log_ep(info)

            if t > learning_starts and (t + 1) % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                stats_t = q_target_vals(obses_t)[0]
                stats_tp1 = q_target_vals(obses_tp1)[0]

                ind = np.arange(batch_size)
                mean_t = stats_t[ind, actions.astype(int)]
                sd_t = np.exp(-np.clip(
                    stats_t[ind, actions.astype(int) +
                            num_actions], -np.log(sdMax), -np.log(sdMin)))
                mean_tp1 = stats_tp1[:, :num_actions]
                sd_tp1 = np.exp(-np.clip(stats_tp1[:, num_actions:],
                                         -np.log(sdMax), -np.log(sdMin)))
                target_mean, target_var, _ = adfq_func(mean_tp1,
                                                       np.square(sd_tp1),
                                                       mean_t,
                                                       np.square(sd_t),
                                                       rewards,
                                                       gamma,
                                                       terminal=dones,
                                                       asymptotic=False,
                                                       batch=True,
                                                       noise=noise,
                                                       varTH=sdMin * sdMin)

                target_mean = np.reshape(target_mean, (-1))
                target_sd = np.reshape(np.sqrt(target_var), (-1))
                loss, m_err, s_err, summary = train(obses_t, actions,
                                                    target_mean, target_sd,
                                                    weights)

                file_writer.add_summary(summary, t)
                eval_logger.log_step(loss=loss)

                if prioritized_replay:
                    new_priorities = np.abs(m_err) + np.abs(
                        s_err) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)
                if render:
                    env.render()

            if t > learning_starts and (t +
                                        1) % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            if (t + 1) % epoch_steps == 0:
                eval_logger.log_epoch(act_test)

            if (checkpoint_freq is not None and t > learning_starts
                    and (t + 1) % checkpoint_freq == 0
                    and eval_logger.get_num_episode() > 10):
                mean_loss = np.float16(np.mean(eval_logger.ep_history['loss']))
                if len(checkpt_loss) > 2 and mean_loss > np.float16(
                        max(checkpt_loss[-3:])) and lr_decay_factor < 1.0:
                    sess.run(lr_decay_op)
                    print(
                        "Learning rate decayed due to an increase in loss: %.4f -> %.4f"
                        % (np.float16(max(checkpt_loss[-3:])), mean_loss))
                elif len(checkpt_loss) > 2 and mean_loss < np.float16(
                        min(checkpt_loss[-3:])) and lr_growth_factor > 1.0:
                    sess.run(lr_growth_op)
                    print(
                        "Learning rate grown due to a decrease in loss: %.4f -> %.4f"
                        % (np.float16(min(checkpt_loss[-3:])), mean_loss))
                checkpt_loss.append(mean_loss)
                # print("Saving model to model_%d.pkl"%(t+1))
                # act.save(os.path.join(save_dir,"model_"+str(t+1)+".pkl"))
                mean_100ep_reward = eval_logger.get_100ep_reward()
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_state(model_file)
    eval_logger.finish(max_timesteps, epoch_steps, learning_starts)
    return act
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          train_mode = True,
          **network_kwargs
            ):
    """Train a deepq model.
    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.
    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.

    """
    # Examine environment parameters
    print(str(env))
    # Set the default brain to work with
    default_brain = env.brain_names[0]
    brain = env.brains[default_brain]

    num_actions=brain.vector_action_space_size[0]
    
    # Create all the functions necessary to train the model

    sess = get_session()
    #set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    #observation_space = env.observation_space

    
    env_info = env.reset(train_mode=train_mode)[default_brain]

    state = get_obs_state_lidar(env_info)

    observation_space=state.copy()
    
    
    #def make_obs_ph(name,Num_action):

    #    tf.placeholder(shape=(None,) + state.shape, dtype=state.dtype, name='st')
        
    #    return tf.placeholder(tf.float32, shape = [None, Num_action],name=name)
    

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug =build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))


        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_variables(model_file)

    return act
Esempio n. 17
0
    def __init__(self,
                 actions,
                 optimizer,
                 convs,
                 fcs,
                 padding,
                 lstm,
                 gamma=0.99,
                 lstm_unit=256,
                 time_horizon=5,
                 policy_factor=1.0,
                 value_factor=0.5,
                 entropy_factor=0.01,
                 grad_clip=40.0,
                 state_shape=[84, 84, 1],
                 buffer_size=2e3,
                 rp_frame=3,
                 phi=lambda s: s,
                 name='global'):
        self.actions = actions
        self.gamma = gamma
        self.name = name
        self.time_horizon = time_horizon
        self.state_shape = state_shape
        self.rp_frame = rp_frame
        self.phi = phi

        self._act,\
        self._train,\
        self._update_local = build_graph.build_train(
            convs=convs,
            fcs=fcs,
            padding=padding,
            lstm=lstm,
            num_actions=len(actions),
            optimizer=optimizer,
            lstm_unit=lstm_unit,
            state_shape=state_shape,
            grad_clip=grad_clip,
            policy_factor=policy_factor,
            value_factor=value_factor,
            entropy_factor=entropy_factor,
            rp_frame=rp_frame,
            scope=name
        )

        # rnn state variables
        self.initial_state = np.zeros((1, lstm_unit), np.float32)
        self.rnn_state0 = self.initial_state
        self.rnn_state1 = self.initial_state

        # last state variables
        self.zero_state = np.zeros(state_shape, dtype=np.float32)
        self.initial_last_obs = [self.zero_state for _ in range(rp_frame)]
        self.last_obs = deque(self.initial_last_obs, maxlen=rp_frame)
        self.last_action = deque([0, 0], maxlen=2)
        self.value_tm1 = None
        self.reward_tm1 = 0.0

        # buffers
        self.rollout = Rollout()
        self.buffer = ReplayBuffer(capacity=buffer_size)

        self.t = 0
        self.t_in_episode = 0
Esempio n. 18
0
def learn(env,
          q_func,
          alpha=1e-5,
          num_cpu=1,
          n_steps=100000,
          update_target_every=500,
          train_main_every=1,
          print_every=50,
          checkpoint_every=10000,
          buffer_size=50000,
          gamma=1.0,
          batch_size=32,
          param_noise=False,
          pre_run_steps=1000,
          exploration_fraction=0.1,
          final_epsilon=0.1,
          callback=None):
    """
    :param env: gym.Env, environment from OpenAI
    :param q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the q function takes the following inputs:
        input_ph: tf.placeholder, network input
        n_actions: int, number of possible actions
        scope: str, specifying the variable scope
        reuse: bool, whether to reuse the variable given in `scope`
    :param alpha: learning rate
    :param num_cpu: number of cpu to use
    :param n_steps: number of training steps
    :param update_target_every: frequency to update the target network
    :param train_main_every: frequency to update(train) the main network
    :param print_every: how often to print message to console
    :param checkpoint_every: how often to save the model.
    :param buffer_size: size of the replay buffer
    :param gamma: int, discount factor
    :param batch_size: int, size of the input batch
    :param param_noise: bool, whether to use parameter noise
    :param pre_run_steps: bool, pre-run steps to fill in the replay buffer. And only
        after `pre_run_steps` steps, will the main and target network begin to update.
    :param exploration_fraction: float, between 0 and 1. Fraction of the `n_steps` to
        linearly decrease the epsilon. After that, the epsilon will remain unchanged.
    :param final_epsilon: float, final epsilon value, usually a very small number
        towards zero.
    :param callback: (dict, dict) -> bool
        a function to decide whether it's time to stop training, takes following inputs:
        local_vars: dict, the local variables in the current scope
        global_vars: dict, the global variables in the current scope
    :return: ActWrapper, a callable function
    """
    n_actions = env.action_space.n
    sess = U.make_session(num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph,
        q_func,
        n_actions,
        optimizer=tf.train.AdamOptimizer(alpha),
        gamma=gamma,
        param_noise=param_noise,
        grad_norm_clipping=10)
    act_params = {
        "q_func": q_func,
        "n_actions": env.action_space.n,
        "make_obs_ph": make_obs_ph,
    }
    buffer = ReplayBuffer(buffer_size)
    exploration = LinearSchedule(schedule_steps=int(exploration_fraction *
                                                    n_steps),
                                 final_p=final_epsilon,
                                 initial_p=1.0)
    # writer = tf.summary.FileWriter("./log", sess.graph)

    U.initialize()
    # writer.close()
    update_target()  # copy from the main network
    episode_rewards = []
    current_episode_reward = 0.0
    model_saved = False
    saved_mean_reward = 0.0
    obs_t = env.reset()
    with tempfile.TemporaryDirectory() as td:
        model_file_path = os.path.join(td, "model")
        for step in range(n_steps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            kwargs = {}
            if not param_noise:
                epsilon = exploration.value(step)
            else:
                assert False, "Not implemented"
            action = act(np.array(obs_t)[None], epsilon=epsilon, **kwargs)[0]
            obs_tp1, reward, done, _ = env.step(action)
            current_episode_reward += reward
            buffer.add(obs_t, action, reward, obs_tp1, done)
            obs_t = obs_tp1
            if done:
                obs_t = env.reset()
                episode_rewards.append(current_episode_reward)
                current_episode_reward = 0.0
            # given sometime to fill in the buffer
            if step < pre_run_steps:
                continue
            # q_value = debug["q_values"]
            # if step % 1000 == 0:
            #     print(q_value(np.array(obs_t)[None]))
            if step % train_main_every == 0:
                obs_ts, actions, rewards, obs_tp1s, dones = buffer.sample(
                    batch_size)
                weights = np.ones_like(dones)
                td_error = train(obs_ts, actions, rewards, obs_tp1s, dones,
                                 weights)
            if step % update_target_every == 0:
                update_target()
            mean_100eps_reward = float(np.mean(episode_rewards[-101:-1]))
            if done and print_every is not None and len(
                    episode_rewards) % print_every == 0:
                print(
                    "step %d, episode %d, epsilon %.2f, running mean reward %.2f"
                    %
                    (step, len(episode_rewards), epsilon, mean_100eps_reward))
            if checkpoint_every is not None and step % checkpoint_every == 0:
                if saved_mean_reward is None or mean_100eps_reward > saved_mean_reward:
                    U.save_state(model_file_path)
                    model_saved = True
                    if print_every is not None:
                        print(
                            "Dump model to file due to mean reward increase: %.2f -> %.2f"
                            % (saved_mean_reward, mean_100eps_reward))
                    saved_mean_reward = mean_100eps_reward
        if model_saved:
            U.load_state(model_file_path)
            if print_every:
                print("Restore model from file with mean reward %.2f" %
                      (saved_mean_reward, ))
    return ActWrapper(act, act_params)
Esempio n. 19
0
    def __init__(self,
                 actions,
                 optimizer,
                 convs,
                 fcs,
                 padding,
                 lstm,
                 gamma=0.99,
                 lstm_unit=256,
                 time_horizon=5,
                 policy_factor=1.0,
                 value_factor=0.5,
                 entropy_factor=0.01,
                 grad_clip=40.0,
                 state_shape=[84, 84, 1],
                 buffer_size=2e3,
                 rp_frame=3,
                 phi=lambda s: s,
                 name='global'):
        self.actions = actions
        self.gamma = gamma
        self.name = name
        self.time_horizon = time_horizon
        self.state_shape = state_shape
        self.rp_frame = rp_frame
        self.phi = phi

        self._act,\
        self._train,\
        self._update_local = build_graph.build_train(
            convs=convs,
            fcs=fcs,
            padding=padding,
            lstm=lstm,
            num_actions=len(actions),
            optimizer=optimizer,
            lstm_unit=lstm_unit,
            state_shape=state_shape,
            grad_clip=grad_clip,
            policy_factor=policy_factor,
            value_factor=value_factor,
            entropy_factor=entropy_factor,
            rp_frame=rp_frame,
            scope=name
        )

        # rnn state variables
        self.initial_state = np.zeros((1, lstm_unit), np.float32)
        self.rnn_state0 = self.initial_state
        self.rnn_state1 = self.initial_state

        # last state variables
        self.zero_state = np.zeros(state_shape, dtype=np.float32)
        self.initial_last_obs = [self.zero_state for _ in range(rp_frame)]
        self.last_obs = deque(self.initial_last_obs, maxlen=rp_frame)
        self.last_action = deque([0, 0], maxlen=2)
        self.value_tm1 = None
        self.reward_tm1 = 0.0

        # buffers
        self.rollout = Rollout()
        self.buffer = ReplayBuffer(capacity=buffer_size)

        self.t = 0
        self.t_in_episode = 0
Esempio n. 20
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          callback=None):
    """Train a deepq model.
    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput([84, 84], name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=2,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': 2,
    }
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.step(0)
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            action = act(np.array(obs)[None],
                         update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                #obs = env.reset()
                episode_rewards.append(0)

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  np.ones_like(rewards))
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                #logger.record_tabular("steps", t)
                #logger.record_tabular("episodes", num_episodes)
                #logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                #logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                #logger.dump_tabular()
                print("steps: {}".format(t))
                print("episodes: {}".format(num_episodes))
                print("mean 100 episode reward: {}".format(mean_100ep_reward))
                print("% time spent exploring: {}".format(
                    int(100 * exploration.value(t))))

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    #if print_freq is not None:
                    #logger.log("Saving model due to mean reward increase: {} -> {}".format(
                    #           saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            #if print_freq is not None:
            #logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
Esempio n. 21
0
def learn(env_id,
          q_func,
          lr=5e-4,
          max_timesteps=10000,
          buffer_size=5000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          train_steps=10,
          learning_starts=500,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100,
          model_dir=None,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          player_processes=None,
          player_connections=None):
    env, _, _ = create_gvgai_environment(env_id)

    # Create all the functions necessary to train the model
    # expert_decision_maker = ExpertDecisionMaker(env=env)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    session = tf.Session()
    session.__enter__()
    policy_path = os.path.join(model_dir, "Policy.pkl")
    model_path = os.path.join(model_dir, "model", "model")
    if os.path.isdir(os.path.join(model_dir, "model")):
        load_state(model_path)
    else:
        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': env.action_space.n,
        }
        act = ActWrapper(act, act_params)
        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()
        act.save(policy_path)
        save_state(model_path)
    env.close()
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_path = os.path.join(model_dir, "Prioritized_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer_path = os.path.join(model_dir, "Normal_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    episode_rewards = list()
    saved_mean_reward = -999999999

    signal.signal(signal.SIGQUIT, signal_handler)
    global terminate_learning

    total_timesteps = 0
    for timestep in range(max_timesteps):
        if terminate_learning:
            break

        for connection in player_connections:
            experiences, reward = connection.recv()
            episode_rewards.append(reward)
            for experience in experiences:
                replay_buffer.add(*experience)
                total_timesteps += 1

        if total_timesteps < learning_starts:
            if timestep % 10 == 0:
                print("not strated yet", flush=True)
            continue

        if timestep % train_freq == 0:
            for i in range(train_steps):
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(total_timesteps))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

        if timestep % target_network_update_freq == 0:
            # Update target network periodically.
            update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if print_freq is not None and timestep % print_freq == 0:
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular(
                "% time spent exploring",
                int(100 * exploration.value(total_timesteps)))
            logger.dump_tabular()

        if timestep % checkpoint_freq == 0 and mean_100ep_reward > saved_mean_reward:
            act.save(policy_path)
            save_state(model_path)
            saved_mean_reward = mean_100ep_reward
            with open(replay_buffer_path, 'wb') as output_file:
                pickle.dump(replay_buffer, output_file,
                            pickle.HIGHEST_PROTOCOL)
            send_message_to_all(player_connections, Message.UPDATE)

    send_message_to_all(player_connections, Message.TERMINATE)
    if mean_100ep_reward > saved_mean_reward:
        act.save(policy_path)
    with open(replay_buffer_path, 'wb') as output_file:
        pickle.dump(replay_buffer, output_file, pickle.HIGHEST_PROTOCOL)
    for player_process in player_processes:
        player_process.join()
        # player_process.terminate()

    return act.load(policy_path)
Esempio n. 22
0
def main():

#    env = gym.make("CartPoleRob-v0")
#    env = gym.make("CartPole-v0")
#    env = gym.make("CartPole-v1")
#    env = gym.make("Acrobot-v1")
#    env = gym.make("MountainCarRob-v0")
#    env = gym.make("FrozenLake-v0")
#    env = gym.make("FrozenLake8x8-v0")
    env = gym.make("FrozenLake8x8nohole-v0")
    
#    robShape = (2,)
#    robShape = (3,)
#    robShape = (200,)
#    robShape = (16,)
    robShape = (64,)
    def make_obs_ph(name):
#        return U.BatchInput(env.observation_space.shape, name=name)
        return U.BatchInput(robShape, name=name)

#    # these params are specific to mountaincar
#    def getOneHotObs(obs):
#        obsFraction = (obs[0] + 1.2) / 1.8
#        idx1 = np.int32(np.trunc(obsFraction*100))
#        obsFraction = (obs[1] + 0.07) / 0.14
#        idx2 = np.int32(np.trunc(obsFraction*100))
#        ident = np.identity(100)
#        return np.r_[ident[idx1,:],ident[idx2,:]]

    # these params are specific to frozenlake
    def getOneHotObs(obs):
#        ident = np.identity(16)
        ident = np.identity(64)
        return ident[obs,:]

    model = models.mlp([32])
#    model = models.mlp([64])
#    model = models.mlp([64], layer_norm=True)
#    model = models.mlp([16, 16])

    # parameters
    q_func=model
    lr=1e-3
#    max_timesteps=100000
    max_timesteps=50000
#    max_timesteps=10000
    buffer_size=50000
    exploration_fraction=0.1
#    exploration_fraction=0.3
    exploration_final_eps=0.02
#    exploration_final_eps=0.1
    train_freq=1
    batch_size=32
    print_freq=10
    checkpoint_freq=10000
    learning_starts=1000
    gamma=1.0
    target_network_update_freq=500
#    prioritized_replay=False
    prioritized_replay=True
    prioritized_replay_alpha=0.6
    prioritized_replay_beta0=0.4
    prioritized_replay_beta_iters=None
    prioritized_replay_eps=1e-6
    num_cpu=16

#    # try mountaincar w/ different input dimensions
#    inputDims = [50,2]
    
    sess = U.make_session(num_cpu)
    sess.__enter__()

    act, train, update_target, debug = build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()


    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    obs = getOneHotObs(obs)
    
#    with tempfile.TemporaryDirectory() as td:
    model_saved = False
#        model_file = os.path.join(td, "model")
    for t in range(max_timesteps):

        # Take action and update exploration to the newest value
        action = act(np.array(obs)[None], update_eps=exploration.value(t))[0]
        new_obs, rew, done, _ = env.step(action)
        new_obs = getOneHotObs(new_obs)
        
        # Store transition in the replay buffer.
        replay_buffer.add(obs, action, rew, new_obs, float(done))
        obs = new_obs
        
        episode_rewards[-1] += rew
        if done:
            obs = env.reset()
            obs = getOneHotObs(obs)
            episode_rewards.append(0.0)

        if t > learning_starts and t % train_freq == 0:
            
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                weights, batch_idxes = np.ones_like(rewards), None
            
            td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)

            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes, new_priorities)

        if t > learning_starts and t % target_network_update_freq == 0:
            
            # Update target network periodically.
            update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        
        if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
#        if done:
            print("steps: " + str(t) + ", episodes: " + str(num_episodes) + ", mean 100 episode reward: " + str(mean_100ep_reward) + ", % time spent exploring: " + str(int(100 * exploration.value(t))))
#            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
#                logger.record_tabular("steps", t)
#                logger.record_tabular("episodes", num_episodes)
#                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
#                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
#                logger.dump_tabular()
#        sess
            

    num2avg = 20
    rListAvg = np.convolve(episode_rewards,np.ones(num2avg))/num2avg
    plt.plot(rListAvg)
#    plt.plot(episode_rewards)
    plt.show()

    sess
Esempio n. 23
0
def learn(env,
          q_func_dict,
          priorities,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          flat_decision_values=False,
          disable_dv=False,
          callback=None):

    # Create all the functions necessary to train the model
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    # sess = tf.Session()
    sess.__enter__()

    executor = ThreadPoolExecutor(max_workers=3)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return U.BatchInput(observation_space_shape, name=name)

    objectives = env.env.get_objectives()

    act = {}
    train = {}
    update_target = {}
    debug = {}
    act_params = {}

    for ob in priorities:
        q_func = q_func_dict[ob]

        act[ob], train[ob], update_target[ob], debug[ob] = dqn_dv.build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            gamma=gamma,
            double_q=True,
            grad_norm_clipping=10,
            scope=ob
        )

        act_params[ob] = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': env.action_space.n,
            'scope': ob,
        }

    multi_act = MultiActWrapper(act, act_params, priorities, env.action_space.n, disable_dv=disable_dv)

    replay_buffer = MultiObjectiveReplayBuffer(buffer_size, objectives)
    beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    [update_target_fn() for update_target_fn in update_target.values()]

    episode_rewards = [0.0]
    objective_rewards = dict((k, [0.0]) for k in priorities)
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}

            update_eps = exploration.value(t)
            update_param_noise_threshold = 0.

            action, q_vals_sum, dvs, selected_dvs, extra_indicators = multi_act(np.array(obs)[None], update_eps=update_eps, **kwargs)

            if isinstance(env.action_space, gym.spaces.MultiBinary):
                env_action = np.zeros(env.action_space.n)
                env_action[action] = 1
            else:
                env_action = action
            reset = False

            env.env.set_extra_indicators(extra_indicators)
            new_obs, rew, done, _ = env.step(env_action)

            rew_sum = sum(rew.values())
            dv_rew = dict([(k, abs(v)) for k, v in rew.items()])

            rew_with_bias = dict([(k, v + 0.1*rew_sum) for k, v in rew.items()])

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, selected_dvs, rew_with_bias, dv_rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += np.sum(list(rew.values()))
            for ob in priorities:
                objective_rewards[ob][-1] += rew[ob]

            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                for ob in priorities:
                    objective_rewards[ob].append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                obses_t, actions, dvs, rewards, dv_rewards, obses_tp1, dones = replay_buffer.sample(batch_size)

                weights, batch_idxes = {}, {}
                for ob in priorities:
                    weights[ob], batch_idxes[ob] = np.ones_like(rewards[ob]), None

                train_threads = []
                td_errors = {}

                def train_wrap(ob, session, args):
                    with session.as_default():
                        td_error = train[ob](*args)
                        return td_error

                for ob in priorities:
                    args = (obses_t, actions, dvs[ob], rewards[ob], dv_rewards[ob], obses_tp1, dones, weights[ob])
                    train_wrap(ob, tf.get_default_session(), args)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                for ob in priorities:
                    update_target[ob]()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            mean_5ep_reward = round(np.mean(episode_rewards[-6:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("mean 5 episode reward", mean_5ep_reward)
                for ob in priorities:
                    obj_mean = round(np.mean(objective_rewards[ob][-6:-1]), 1)
                    logger.record_tabular(ob + " mean 5ep", obj_mean)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            U.load_state(model_file)

    return multi_act