Esempio n. 1
0
def objective(params):
    #optimize_model = build_lstm_v1.lstm_model_102(params, train_data.shape[2], 24, 24)
    #optimize_model = build_lstm_v1.lstm_model_106(params, train_data.shape[2], 24)
    optimize_model = build_lstm_v1.lstm_model_110b(params, train_data.shape[2],
                                                   24)

    #for epochs in range(5):
    for ep in range(20):
        #optimize_history = optimize_model.fit(X_seq, Y_seq, batch_size=1, nb_epoch=3, validation_split=(X_seq, Y_seq), shuffle=False)
        optimize_history = optimize_model.fit(train_data,
                                              H_t,
                                              batch_size=1,
                                              nb_epoch=1,
                                              validation_data=(val_data,
                                                               H_val),
                                              shuffle=False)
        #optimize_history = optimize_model.fit(train_data, H_t, batch_size=1, nb_epoch=1, validation_split=0.3, shuffle=False)
        optimize_model.reset_states()

    loss_v = optimize_history.history['val_loss']
    print loss_v

    loss_out = loss_v[-1]

    return {'loss': loss_out, 'status': STATUS_OK}
Esempio n. 2
0
def objective(params):
    optimize_model = build_lstm_v1.lstm_model_110b(params, train_data.shape[2], 24)
    loss_out = NNFunctions.model_optimizer_101(optimize_model, train_data, H_t, val_data, H_val, 10)
    return {'loss': loss_out, 'status': STATUS_OK}
Esempio n. 3
0
    optimize_model = build_lstm_v1.lstm_model_110b(params, train_data.shape[2], 24)
    loss_out = NNFunctions.model_optimizer_101(optimize_model, train_data, H_t, val_data, H_val, 10)
    return {'loss': loss_out, 'status': STATUS_OK}


trials = Trials()
best = fmin(objective, space, algo=tpe.suggest, trials=trials, max_evals=5)

#Building Stateful Model
lstm_hidden = hyperopt.space_eval(space, best)
print lstm_hidden
tsteps = 24
out_dim = 24

#lstm_model = build_lstm_v1.lstm_model_102(lstm_hidden, train_data.shape[2], out_dim, tsteps)
lstm_model = build_lstm_v1.lstm_model_110b(lstm_hidden, train_data.shape[2], tsteps)
save_model = lstm_model

##callbacks for Early Stopping
callbacks = [EarlyStopping(monitor='val_loss', patience=3)]

#parameters for simulation
attempt_max = 3
epoch_max = 20
min_epoch = 10

#Criterion for early stopping
tau = 5
e_mat = numpy.zeros((epoch_max, attempt_max))
e_temp = numpy.zeros((tau, ))