Esempio n. 1
0
    def build_transforms(self, config, **kwargs):
        if config.transforms.name == 'Compose':
            transfms = []
            for t in config.transforms.params:
                transfms.append(Registry.build_from_config('transform', t))

            return transforms.Compose(transfms)
        elif config.transforms.name == '':
            return None
        else:
            return Registry.build_from_config('transform', config.transforms),
Esempio n. 2
0
    def build_dataloaders(self, config, **kwargs):
        dataloaders = []
        # splitter = self.build_logger_splitter(config)

        # for fold in range(splitter.n_splits):
        #     train, val = splitter.get_fold(fold)

        #     # dataset_config = {'name': config.dataset.name, 'params': config.dataset.params}
        #     # dataset_config['params'].update(split_config)

        #     transform = self.build_transforms(config)
        #     default_args = {}
        #     if transform is not None:
        #         default_args['transform'] = transform

        #     default_args['indices'] = train
        #     dataset = Registry.build_from_config('dataset', config.dataset, default_args=default_args)                       
            
        #     batch_size = config.train.batch_size
        #     is_train = True
        #     dataloader = DataLoader(dataset,
        #                             shuffle=is_train,
        #                             batch_size=batch_size,
        #                             drop_last=is_train,
        #                             num_workers=config.transforms.num_preprocessor,
        #                             pin_memory=True)

        #     dataloaders.append({'fold': fold, 'mode': is_train,'dataloader': dataloader})



        #     # validation dataloder
        #     default_args['indices'] = val

        #     dataset = Registry.build_from_config('dataset', config.dataset, default_args=default_args)
        #     batch_size = config.evaluation.batch_size
        #     is_train = False
            
        #     dataloader = DataLoader(dataset,
        #                             shuffle=is_train,
        #                             batch_size=batch_size,
        #                             drop_last=is_train,
        #                             num_workers=config.transforms.num_preprocessor,
        #                             pin_memory=True)

        #     dataloaders.append({'fold': fold, 'mode': is_train,'dataloader': dataloader})


        for split_config in config.dataset.splits:
            dataset_config = {'name': config.dataset.name, 'params': config.dataset.params}
            dataset_config['params'].update(split_config)

            transform = self.build_transforms(config)
            default_args = {}
            if transform is not None:
                default_args['transform'] = transform

            dataset = Registry.build_from_config('dataset', config.dataset, default_args=default_args)

            is_train = dataset_config['params'].train
            if is_train:
                batch_size = config.train.batch_size
            else:
                batch_size = config.evaluation.batch_size
            dataloader = DataLoader(dataset,
                                    shuffle=is_train,
                                    batch_size=batch_size,
                                    drop_last=is_train,
                                    num_workers=config.transforms.num_preprocessor,
                                    pin_memory=True)

            dataloaders.append({'mode': is_train, 'split': dataset_config['params'].split, 'dataloader': dataloader})
        return dataloaders        
Esempio n. 3
0
 def build_logger_fn(self, config, **kwargs):
     return Registry.build_from_config('hooks', config.logger_hook, kwargs)
Esempio n. 4
0
 def build_splitter(self, config, **kwargs):
     return Registry.build_from_config('splitter', config.splitter, kwargs)
Esempio n. 5
0
 def build_post_forward_hook(self, config, **kwargs):
     return Registry.build_from_config('hooks', config.post_forward_hook, kwargs)
Esempio n. 6
0
 def build_metric_fn(self, config, **kwargs):
     return Registry.build_from_config('hooks', config.metric_hook, kwargs)
Esempio n. 7
0
 def build_scheduler(self, config, **kwargs):
     return Registry.build_from_config('scheduler', config.scheduler, kwargs)
Esempio n. 8
0
 def build_optimizer(self, config, **kwargs):
     return Registry.build_from_config('optimizer', config.optimizer, kwargs)
Esempio n. 9
0
 def build_loss_fn(self, config, **kwargs):
     return Registry.build_from_config('loss', config.loss, kwargs)
Esempio n. 10
0
 def build_model(self, config, **kwargs):
     return Registry.build_from_config('model', config.model, kwargs)
Esempio n. 11
0
 def regist_defaults(self):
     Registry.add('loss', nn.NLLLoss)
     Registry.add('optimizer', optim.Adadelta)
     Registry.add('optimizer', optim.AdamW)
     Registry.add('scheduler', optim.lr_scheduler.StepLR)
     Registry.add('scheduler', optim.lr_scheduler.MultiStepLR)
     Registry.add('dataset', datasets.MNIST)
     Registry.add('transform', transforms.ToTensor)
     Registry.add('transform', transforms.Normalize)
     Registry.add('hooks', DefaultPostForwardHook)
     Registry.add('hooks', DefaultMetric)
     Registry.add('hooks', DefaultLogger)
     Registry.add('model', Mnist)