Esempio n. 1
0
def calc_proximity(
    input_rasters,
    target_value=1,
    out_path=None,
    max_dist=1000,
    add_border=False,
    weighted=False,
    invert=False,
    return_array=False,
    postfix="_proximity",
    uuid=False,
    overwrite=True,
    skip_existing=False,
):
    """
    Calculate the proximity of input_raster to values
    """
    raster_list, path_list = ready_io_raster(input_rasters,
                                             out_path,
                                             overwrite,
                                             postfix=postfix,
                                             uuid=uuid)

    output = []
    for index, input_raster in enumerate(raster_list):
        out_path = path_list[index]

        if skip_existing and os.path.exists(out_path):
            output.append(out_path)
            continue

        in_arr = raster_to_array(input_raster, filled=True)
        bin_arr = (in_arr != target_value).astype("uint8")
        bin_raster = array_to_raster(bin_arr, reference=input_raster)

        in_raster = open_raster(bin_raster)
        in_raster_path = bin_raster

        if add_border:
            border_size = 1
            border_raster = add_border_to_raster(
                in_raster,
                border_size=border_size,
                border_value=0,
                overwrite=True,
            )

            in_raster = open_raster(border_raster)

            gdal.Unlink(in_raster_path)
            in_raster_path = border_raster

        src_band = in_raster.GetRasterBand(1)

        driver_name = "GTiff" if out_path is None else path_to_driver_raster(
            out_path)
        if driver_name is None:
            raise ValueError(f"Unable to parse filetype from path: {out_path}")

        driver = gdal.GetDriverByName(driver_name)
        if driver is None:
            raise ValueError(
                f"Error while creating driver from extension: {out_path}")

        mem_path = f"/vsimem/raster_proximity_tmp_{uuid4().int}.tif"

        dest_raster = driver.Create(
            mem_path,
            in_raster.RasterXSize,
            in_raster.RasterYSize,
            1,
            gdal.GetDataTypeByName("Float32"),
        )

        dest_raster.SetGeoTransform(in_raster.GetGeoTransform())
        dest_raster.SetProjection(in_raster.GetProjectionRef())
        dst_band = dest_raster.GetRasterBand(1)

        gdal.ComputeProximity(
            src_band,
            dst_band,
            [
                f"VALUES='1'",
                "DISTUNITS=GEO",
                f"MAXDIST={max_dist}",
            ],
        )

        dst_arr = dst_band.ReadAsArray()
        gdal.Unlink(mem_path)
        gdal.Unlink(in_raster_path)

        dst_arr = np.where(dst_arr > max_dist, max_dist, dst_arr)

        if invert:
            dst_arr = max_dist - dst_arr

        if weighted:
            dst_arr = dst_arr / max_dist

        if add_border:
            dst_arr = dst_arr[border_size:-border_size,
                              border_size:-border_size]

        src_band = None
        dst_band = None
        in_raster = None
        dest_raster = None

        if return_array:
            output.append(dst_arr)
        else:
            array_to_raster(dst_arr, reference=input_raster, out_path=out_path)
            output.append(out_path)

        dst_arr = None

    if isinstance(input_rasters, list):
        return output

    return output[0]
Esempio n. 2
0
def add_border_to_raster(
    input_raster,
    out_path=None,
    border_size=100,
    border_size_unit="px",
    border_value=0,
    overwrite: bool = True,
    creation_options: list = [],
):
    in_raster = open_raster(input_raster)
    metadata = raster_to_metadata(in_raster)

    # Parse the driver
    driver_name = "GTiff" if out_path is None else path_to_driver_raster(
        out_path)
    if driver_name is None:
        raise ValueError(f"Unable to parse filetype from path: {out_path}")

    driver = gdal.GetDriverByName(driver_name)
    if driver is None:
        raise ValueError(
            f"Error while creating driver from extension: {out_path}")

    output_name = None
    if out_path is None:
        output_name = f"/vsimem/raster_proximity_{uuid4().int}.tif"
    else:
        output_name = out_path

    in_arr = raster_to_array(in_raster)

    if border_size_unit == "px":
        border_size_y = border_size
        border_size_x = border_size
        new_shape = (
            in_arr.shape[0] + (2 * border_size_y),
            in_arr.shape[1] + (2 * border_size_x),
            in_arr.shape[2],
        )
    else:
        border_size_y = round(border_size / metadata["pixel_height"])
        border_size_x = round(border_size / metadata["pixel_width"])
        new_shape = (
            in_arr.shape[0] + (2 * border_size_y),
            in_arr.shape[1] + (2 * border_size_x),
            in_arr.shape[2],
        )

    new_arr = np.full(new_shape, border_value, dtype=in_arr.dtype)
    new_arr[border_size_y:-border_size_y,
            border_size_x:-border_size_x, :] = in_arr

    if isinstance(in_arr, np.ma.MaskedArray):
        mask = np.zeros(new_shape, dtype=bool)
        mask[border_size_y:-border_size_y,
             border_size_x:-border_size_x, :] = in_arr.mask
        new_arr = np.ma.array(new_arr, mask=mask)
        new_arr.fill_value = in_arr.fill_value

    remove_if_overwrite(out_path, overwrite)

    dest_raster = driver.Create(
        output_name,
        new_shape[1],
        new_shape[0],
        metadata["band_count"],
        numpy_to_gdal_datatype(in_arr.dtype),
        default_options(creation_options),
    )

    og_transform = in_raster.GetGeoTransform()

    new_transform = []
    for i in og_transform:
        new_transform.append(i)

    new_transform[0] -= border_size_x * og_transform[1]
    new_transform[3] -= border_size_y * og_transform[5]

    dest_raster.SetGeoTransform(new_transform)
    dest_raster.SetProjection(in_raster.GetProjectionRef())

    for band_num in range(1, metadata["band_count"] + 1):
        dst_band = dest_raster.GetRasterBand(band_num)
        dst_band.WriteArray(new_arr[:, :, band_num - 1])

        if metadata["has_nodata"]:
            dst_band.SetNoDataValue(metadata["nodata_value"])

    return output_name
Esempio n. 3
0
def test_extraction(
    rasters: Union[list, str, gdal.Dataset],
    arrays: Union[list, np.ndarray],
    grid: Union[ogr.DataSource, str],
    samples: int = 1000,  # if 0, all
    grid_layer_index: int = 0,
    verbose: int = 1,
) -> bool:
    """Validates the output of the patch_extractor. Useful if you need peace of mind.
    Set samples to 0 to tests everything.
    Args:
        rasters (list of rasters | path | raster): The raster(s) used.

        arrays (list of arrays | ndarray): The arrays generated.

        grid (vector | vector_path): The grid generated.

    **kwargs:
        samples (int): The amount of patches to randomly test. If 0 all patches will be
        tested. This is a long process, so consider only testing everything if absolutely
        necessary.

        grid_layer_index (int): If the grid is part of a multi-layer vector, specify the
        index of the grid.

        verbose (int): If 1 will output messages on progress.

    Returns:
        True if the extraction is valid. Raises an error otherwise.
    """
    type_check(rasters, [list, str, gdal.Dataset], "rasters")
    type_check(arrays, [list, str, np.ndarray], "arrays")
    type_check(grid, [list, str, ogr.DataSource], "grid")
    type_check(samples, [int], "samples")
    type_check(grid_layer_index, [int], "clip_layer_index")
    type_check(verbose, [int], "verbose")

    in_rasters = to_raster_list(rasters)
    in_arrays = arrays

    if verbose == 1:
        print("Verifying integrity of output grid..")

    # grid_memory = open_vector(internal_vector_to_memory(grid))
    grid_memory = open_vector(grid)
    grid_metadata = internal_vector_to_metadata(grid)
    grid_projection = grid_metadata["projection_osr"]

    if grid_layer_index > (grid_metadata["layer_count"] - 1):
        raise ValueError(
            f"Requested non-existing layer index: {grid_layer_index}")

    grid_layer = grid_memory.GetLayer(grid_layer_index)

    # Select sample fids
    feature_count = grid_metadata["layers"][grid_layer_index]["feature_count"]
    test_samples = samples if samples > 0 else feature_count
    max_test = min(test_samples, feature_count) - 1
    test_fids = np.array(random.sample(range(0, feature_count), max_test),
                         dtype="uint64")

    mem_driver = ogr.GetDriverByName("ESRI Shapefile")
    for index, raster in enumerate(in_rasters):
        test_rast = open_raster(raster)

        test_array = in_arrays[index]
        if isinstance(test_array, str):
            if not os.path.exists(test_array):
                raise ValueError(f"Numpy array does not exist: {test_array}")

            try:
                test_array = np.load(in_arrays[index])
            except:
                raise Exception(
                    f"Attempted to read numpy raster from: {in_arrays[index]}")

        base = os.path.basename(raster)
        basename = os.path.splitext(base)[0]

        if verbose == 1:
            print(f"Testing: {basename}")

        tested = 0

        for test in test_fids:
            feature = grid_layer.GetFeature(test)

            if feature is None:
                raise Exception(f"Feature not found: {test}")

            test_ds_path = f"/vsimem/test_mem_grid_{uuid4().int}.gpkg"
            test_ds = mem_driver.CreateDataSource(test_ds_path)
            test_ds_lyr = test_ds.CreateLayer("test_mem_grid_layer",
                                              geom_type=ogr.wkbPolygon,
                                              srs=grid_projection)
            test_ds_lyr.CreateFeature(feature.Clone())
            test_ds.SyncToDisk()

            clipped = internal_clip_raster(
                test_rast,
                test_ds_path,
                adjust_bbox=False,
                crop_to_geom=True,
                all_touch=False,
            )

            if clipped is None:
                raise Exception(
                    "Error while clipping raster. Likely a bad extraction.")

            ref_image = raster_to_array(clipped, filled=True)
            image_block = test_array[test]
            if not np.array_equal(ref_image, image_block):
                # from matplotlib import pyplot as plt; plt.imshow(ref_image[:,:,0]); plt.show()
                raise Exception(
                    f"Image {basename} and grid cell did not match..")

            if verbose == 1:
                progress(tested, len(test_fids) - 1, "Verifying..")

            tested += 1

    return True
Esempio n. 4
0
def internal_reproject_raster(
    raster: Union[str, gdal.Dataset],
    projection: Union[int, str, gdal.Dataset, ogr.DataSource,
                      osr.SpatialReference],
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    copy_if_already_correct: bool = True,
    overwrite: bool = True,
    creation_options: list = [],
    dst_nodata: Union[str, int, float] = "infer",
    prefix: str = "",
    postfix: str = "_reprojected",
) -> str:
    """OBS: Internal. Single output.

    Reproject a raster(s) to a target coordinate reference system.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(
        projection,
        [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference],
        "projection",
    )
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(copy_if_already_correct, [bool], "copy_if_already_correct")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)
    out_name = path_list[0]
    ref = open_raster(raster_list[0])
    metadata = raster_to_metadata(ref)

    out_creation_options = default_options(creation_options)
    out_format = path_to_driver_raster(out_name)

    original_projection = parse_projection(ref)
    target_projection = parse_projection(projection)

    if not isinstance(original_projection, osr.SpatialReference):
        raise Exception("Error while parsing input projection.")

    if not isinstance(target_projection, osr.SpatialReference):
        raise Exception("Error while parsing target projection.")

    if original_projection.IsSame(target_projection):
        if not copy_if_already_correct:
            return get_raster_path(ref)

    src_nodata = metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                metadata["datatype_gdal_raw"])
        elif isinstance(dst_nodata, str):
            raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}")
        else:
            out_nodata = dst_nodata

    remove_if_overwrite(out_path, overwrite)

    reprojected = gdal.Warp(
        out_name,
        ref,
        format=out_format,
        srcSRS=original_projection,
        dstSRS=target_projection,
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        srcNodata=metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if reprojected is None:
        raise Exception(f"Error while reprojecting raster: {raster}")

    return out_name
Esempio n. 5
0
def _warp_raster(
    raster: Union[str, gdal.Dataset],
    out_path: Optional[str] = None,
    projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource,
                               osr.SpatialReference]] = None,
    clip_geom: Optional[Union[str, ogr.DataSource]] = None,
    target_size: Optional[Union[Tuple[Number], Number]] = None,
    target_in_pixels: bool = False,
    resample_alg: str = "nearest",
    crop_to_geom: bool = True,
    all_touch: bool = True,
    adjust_bbox: bool = True,
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
    src_nodata: Union[str, int, float] = "infer",
    dst_nodata: Union[str, int, float] = "infer",
    layer_to_clip: int = 0,
    prefix: str = "",
    postfix: str = "_resampled",
) -> str:
    """WARNING: INTERNAL. DO NOT USE."""
    raster_list, path_list = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)

    origin = open_raster(raster_list[0])
    out_name = path_list[0]
    raster_metadata = raster_to_metadata(origin, create_geometry=True)

    # options
    warp_options = []
    if all_touch:
        warp_options.append("CUTLINE_ALL_TOUCHED=TRUE")
    else:
        warp_options.append("CUTLINE_ALL_TOUCHED=FALSE")

    origin_projection: osr.SpatialReference = raster_metadata["projection_osr"]
    origin_extent: ogr.Geometry = raster_metadata["extent_geom_latlng"]

    target_projection = origin_projection
    if projection is not None:
        target_projection = parse_projection(projection)

    if clip_geom is not None:
        if is_raster(clip_geom):
            opened_raster = open_raster(clip_geom)
            clip_metadata_raster = raster_to_metadata(opened_raster,
                                                      create_geometry=True)
            clip_ds = clip_metadata_raster["extent_datasource"]
            clip_metadata = internal_vector_to_metadata(clip_ds,
                                                        create_geometry=True)
        elif is_vector(clip_geom):
            clip_ds = open_vector(clip_geom)
            clip_metadata = internal_vector_to_metadata(clip_ds,
                                                        create_geometry=True)
        else:
            if file_exists(clip_geom):
                raise ValueError(f"Unable to parse clip geometry: {clip_geom}")
            else:
                raise ValueError(f"Unable to find clip geometry {clip_geom}")

        if layer_to_clip > (clip_metadata["layer_count"] - 1):
            raise ValueError("Requested an unable layer_to_clip.")

        clip_projection = clip_metadata["projection_osr"]
        clip_extent = clip_metadata["extent_geom_latlng"]

        # Fast check: Does the extent of the two inputs overlap?
        if not origin_extent.Intersects(clip_extent):
            raise Exception("Clipping geometry did not intersect raster.")

        # Check if projections match, otherwise reproject target geom.
        if not target_projection.IsSame(clip_projection):
            clip_metadata["extent"] = reproject_extent(
                clip_metadata["extent"],
                clip_projection,
                target_projection,
            )

        # The extent needs to be reprojected to the target.
        # this ensures that adjust_bbox works.
        x_min_og, y_max_og, x_max_og, y_min_og = reproject_extent(
            raster_metadata["extent"],
            origin_projection,
            target_projection,
        )
        output_bounds = (x_min_og, y_min_og, x_max_og, y_max_og
                         )  # gdal_warp format

        if crop_to_geom:

            if adjust_bbox:
                output_bounds = align_bbox(
                    raster_metadata["extent"],
                    clip_metadata["extent"],
                    raster_metadata["pixel_width"],
                    raster_metadata["pixel_height"],
                    warp_format=True,
                )

            else:
                x_min_og, y_max_og, x_max_og, y_min_og = clip_metadata[
                    "extent"]
                output_bounds = (
                    x_min_og,
                    y_min_og,
                    x_max_og,
                    y_max_og,
                )  # gdal_warp format

        if clip_metadata["layer_count"] > 1:
            clip_ds = vector_to_memory(
                clip_ds,
                memory_path=f"clip_geom_{uuid4().int}.gpkg",
                layer_to_extract=layer_to_clip,
            )
        elif not isinstance(clip_ds, str):
            clip_ds = vector_to_memory(
                clip_ds,
                memory_path=f"clip_geom_{uuid4().int}.gpkg",
            )

        if clip_ds is None:
            raise ValueError(f"Unable to parse input clip geom: {clip_geom}")

    x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
        target_size, target_in_pixels)

    out_format = path_to_driver_raster(out_name)
    out_creation_options = default_options(creation_options)

    # nodata
    out_nodata = None
    if src_nodata is not None:
        out_nodata = raster_metadata["nodata_value"]
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                raster_metadata["datatype_gdal_raw"])
        else:
            out_nodata = dst_nodata

    # Removes file if it exists and overwrite is True.
    remove_if_overwrite(out_path, overwrite)

    warped = gdal.Warp(
        out_name,
        origin,
        xRes=x_res,
        yRes=y_res,
        width=x_pixels,
        height=y_pixels,
        cutlineDSName=clip_ds,
        outputBounds=output_bounds,
        format=out_format,
        srcSRS=origin_projection,
        dstSRS=target_projection,
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        warpOptions=warp_options,
        srcNodata=src_nodata,
        dstNodata=out_nodata,
        targetAlignedPixels=False,
        cropToCutline=False,
        multithread=True,
    )

    if warped is None:
        raise Exception(f"Error while warping raster: {raster}")

    return out_name
Esempio n. 6
0
def internal_resample_raster(
    raster: Union[str, gdal.Dataset],
    target_size: Union[tuple, int, float, str, gdal.Dataset],
    target_in_pixels: bool = False,
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    overwrite: bool = True,
    creation_options: list = [],
    dtype=None,
    dst_nodata: Union[str, int, float] = "infer",
    prefix: str = "",
    postfix: str = "_resampled",
    add_uuid: bool = False,
) -> str:
    """OBS: Internal. Single output.

    Reprojects a raster given a target projection. Beware if your input is in
    latitude and longitude, you'll need to specify the target_size in degrees as well.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(target_size, [tuple, int, float, str, gdal.Dataset],
               "target_size")
    type_check(target_in_pixels, [bool], "target_in_pixels")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(
        raster,
        out_path,
        overwrite=overwrite,
        prefix=prefix,
        postfix=postfix,
        uuid=add_uuid,
    )

    ref = open_raster(raster_list[0])
    metadata = raster_to_metadata(ref)
    out_name = path_list[0]

    x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
        target_size, target_in_pixels)

    out_creation_options = default_options(creation_options)
    out_format = path_to_driver_raster(out_name)

    src_nodata = metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                metadata["datatype_gdal_raw"])
        elif isinstance(dst_nodata, str):
            raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}")
        else:
            out_nodata = dst_nodata

    remove_if_overwrite(out_path, overwrite)

    resampled = gdal.Warp(
        out_name,
        ref,
        width=x_pixels,
        height=y_pixels,
        xRes=x_res,
        yRes=y_res,
        format=out_format,
        outputType=translate_datatypes(dtype),
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        srcNodata=metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if resampled is None:
        raise Exception(f"Error while resampling raster: {out_name}")

    return out_name
Esempio n. 7
0
def shift_raster(
    raster: Union[gdal.Dataset, str],
    shift: Union[Number, Tuple[Number, Number], List[Number]],
    out_path: Optional[str] = None,
    overwrite: bool = True,
    creation_options: list = [],
) -> Union[gdal.Dataset, str]:
    """Shifts a raster in a given direction.

    Returns:
        An in-memory raster. If an out_path is given the output is a string containing
        the path to the newly created raster.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(shift, [tuple, list], "shift")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")

    ref = open_raster(raster)
    metadata = raster_to_metadata(ref)

    x_shift: float = 0.0
    y_shift: float = 0.0
    if isinstance(shift, tuple) or isinstance(shift, list):
        if len(shift) == 1:
            if is_number(shift[0]):
                x_shift = float(shift[0])
                y_shift = float(shift[0])
            else:
                raise ValueError(
                    "shift is not a number or a list/tuple of numbers.")
        elif len(shift) == 2:
            if is_number(shift[0]) and is_number(shift[1]):
                x_shift = float(shift[0])
                y_shift = float(shift[1])
        else:
            raise ValueError("shift is either empty or larger than 2.")
    elif is_number(shift):
        x_shift = float(shift)
        y_shift = float(shift)
    else:
        raise ValueError("shift is invalid.")

    out_name = None
    out_format = None
    out_creation_options = []
    if out_path is None:
        raster_name = metadata["basename"]
        out_name = f"/vsimem/{raster_name}_{uuid4().int}_resampled.tif"
        out_format = "GTiff"
    else:
        out_creation_options = default_options(creation_options)
        out_name = out_path
        out_format = path_to_driver_raster(out_path)

    remove_if_overwrite(out_path, overwrite)

    driver = gdal.GetDriverByName(out_format)

    shifted = driver.Create(
        out_name,  # Location of the saved raster, ignored if driver is memory.
        metadata["width"],  # Dataframe width in pixels (e.g. 1920px).
        metadata["height"],  # Dataframe height in pixels (e.g. 1280px).
        metadata["band_count"],  # The number of bands required.
        metadata["datatype_gdal_raw"],  # Datatype of the destination.
        out_creation_options,
    )

    new_transform = list(metadata["transform"])
    new_transform[0] += x_shift
    new_transform[3] += y_shift

    shifted.SetGeoTransform(new_transform)
    shifted.SetProjection(metadata["projection"])

    src_nodata = metadata["nodata_value"]

    for band in range(metadata["band_count"]):
        origin_raster_band = ref.GetRasterBand(band + 1)
        target_raster_band = shifted.GetRasterBand(band + 1)

        target_raster_band.WriteArray(origin_raster_band.ReadAsArray())
        target_raster_band.SetNoDataValue(src_nodata)

    if out_path is not None:
        shifted = None
        return out_path
    else:
        return shifted
Esempio n. 8
0
def _clip_raster(
    raster: Union[str, gdal.Dataset],
    clip_geom: Union[str, ogr.DataSource, gdal.Dataset],
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    crop_to_geom: bool = True,
    adjust_bbox: bool = True,
    all_touch: bool = True,
    overwrite: bool = True,
    creation_options: list = [],
    dst_nodata: Union[str, int, float] = "infer",
    layer_to_clip: int = 0,
    prefix: str = "",
    postfix: str = "_clipped",
    verbose: int = 1,
    uuid: bool = False,
    ram: int = 8000,
) -> str:
    """OBS: Internal. Single output.

    Clips a raster(s) using a vector geometry or the extents of
    a raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(clip_geom, [str, ogr.DataSource, gdal.Dataset], "clip_geom")
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(crop_to_geom, [bool], "crop_to_geom")
    type_check(adjust_bbox, [bool], "adjust_bbox")
    type_check(all_touch, [bool], "all_touch")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(layer_to_clip, [int], "layer_to_clip")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")
    type_check(verbose, [int], "verbose")
    type_check(uuid, [bool], "uuid")

    _, path_list = ready_io_raster(raster,
                                   out_path,
                                   overwrite=overwrite,
                                   prefix=prefix,
                                   postfix=postfix,
                                   uuid=uuid)

    if out_path is not None:
        if "vsimem" not in out_path:
            if not os.path.isdir(os.path.split(os.path.normpath(out_path))[0]):
                raise ValueError(
                    f"out_path folder does not exists: {out_path}")

    # Input is a vector.
    if is_vector(clip_geom):
        clip_ds = open_vector(clip_geom)

        clip_metadata = internal_vector_to_metadata(
            clip_ds, process_layer=layer_to_clip)

        if clip_metadata["layer_count"] > 1:
            clip_ds = internal_vector_to_memory(clip_ds,
                                                layer_to_extract=layer_to_clip)

        if isinstance(clip_ds, ogr.DataSource):
            clip_ds = clip_ds.GetName()

    # Input is a raster (use extent)
    elif is_raster(clip_geom):
        clip_metadata = raster_to_metadata(clip_geom, create_geometry=True)
        clip_metadata["layer_count"] = 1
        clip_ds = clip_metadata["extent_datasource"].GetName()
    else:
        if file_exists(clip_geom):
            raise ValueError(f"Unable to parse clip geometry: {clip_geom}")
        else:
            raise ValueError(f"Unable to locate clip geometry {clip_geom}")

    if layer_to_clip > (clip_metadata["layer_count"] - 1):
        raise ValueError("Requested an unable layer_to_clip.")

    if clip_ds is None:
        raise ValueError(f"Unable to parse input clip geom: {clip_geom}")

    clip_projection = clip_metadata["projection_osr"]
    clip_extent = clip_metadata["extent"]

    # options
    warp_options = []
    if all_touch:
        warp_options.append("CUTLINE_ALL_TOUCHED=TRUE")
    else:
        warp_options.append("CUTLINE_ALL_TOUCHED=FALSE")

    origin_layer = open_raster(raster)

    raster_metadata = raster_to_metadata(raster)
    origin_projection = raster_metadata["projection_osr"]
    origin_extent = raster_metadata["extent"]

    # Check if projections match, otherwise reproject target geom.
    if not origin_projection.IsSame(clip_projection):
        clip_metadata["extent"] = reproject_extent(
            clip_metadata["extent"],
            clip_projection,
            origin_projection,
        )

    # Fast check: Does the extent of the two inputs overlap?
    if not gdal_bbox_intersects(origin_extent, clip_extent):
        raise Exception("Geometries did not intersect.")

    output_bounds = raster_metadata["extent_gdal_warp"]

    if crop_to_geom:

        if adjust_bbox:
            output_bounds = align_bbox(
                raster_metadata["extent"],
                clip_metadata["extent"],
                raster_metadata["pixel_width"],
                raster_metadata["pixel_height"],
                warp_format=True,
            )

        else:
            output_bounds = clip_metadata["extent_gdal_warp"]

    # formats
    out_name = path_list[0]
    out_format = path_to_driver_raster(out_name)
    out_creation_options = default_options(creation_options)

    # nodata
    src_nodata = raster_metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                raster_metadata["datatype_gdal_raw"])
        elif dst_nodata is None:
            out_nodata = None
        elif isinstance(dst_nodata, (int, float)):
            out_nodata = dst_nodata
        else:
            raise ValueError(f"Unable to parse nodata_value: {dst_nodata}")

    # Removes file if it exists and overwrite is True.
    remove_if_overwrite(out_path, overwrite)

    if verbose == 0:
        gdal.PushErrorHandler("CPLQuietErrorHandler")

    clipped = gdal.Warp(
        out_name,
        origin_layer,
        format=out_format,
        resampleAlg=translate_resample_method(resample_alg),
        targetAlignedPixels=False,
        outputBounds=output_bounds,
        xRes=raster_metadata["pixel_width"],
        yRes=raster_metadata["pixel_height"],
        cutlineDSName=clip_ds,
        cropToCutline=
        False,  # GDAL does this incorrectly when targetAlignedPixels is True.
        creationOptions=out_creation_options,
        warpMemoryLimit=ram,
        warpOptions=warp_options,
        srcNodata=raster_metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if verbose == 0:
        gdal.PopErrorHandler()

    if clipped is None:
        raise Exception("Error while clipping raster.")

    return out_name
Esempio n. 9
0
def raster_to_grid(
    raster: Union[str, gdal.Dataset],
    grid: Union[str, ogr.DataSource],
    out_dir: str,
    use_field: Optional[str] = None,
    generate_vrt: bool = True,
    overwrite: bool = True,
    process_layer: int = 0,
    creation_options: list = [],
    verbose: int = 1,
) -> Union[List[str], Tuple[Optional[List[str]], Optional[str]]]:
    """Clips a raster to a grid. Generate .vrt.

    Returns:
        The filepath for the newly created raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(grid, [str, ogr.DataSource], "grid")
    type_check(out_dir, [str], "out_dir")
    type_check(overwrite, [bool], "overwrite")
    type_check(process_layer, [int], "process_layer")
    type_check(creation_options, [list], "creation_options")
    type_check(verbose, [int], "verbose")

    use_grid = open_vector(grid)
    grid_metadata = internal_vector_to_metadata(use_grid)
    raster_metadata = raster_to_metadata(raster, create_geometry=True)

    # Reproject raster if necessary.
    if not raster_metadata["projection_osr"].IsSame(grid_metadata["projection_osr"]):
        use_grid = reproject_vector(grid, raster_metadata["projection_osr"])
        grid_metadata = internal_vector_to_metadata(use_grid)

        if not isinstance(grid_metadata, dict):
            raise Exception("Error while parsing metadata.")

    # Only use the polygons in the grid that intersect the extent of the raster.
    use_grid = intersect_vector(use_grid, raster_metadata["extent_datasource"])

    ref = open_raster(raster)
    use_grid = open_vector(use_grid)

    layer = use_grid.GetLayer(process_layer)
    feature_count = layer.GetFeatureCount()
    raster_extent = raster_metadata["extent_ogr"]
    filetype = path_to_ext(raster)
    name = raster_metadata["name"]
    geom_type = grid_metadata["layers"][process_layer]["geom_type_ogr"]

    if use_field is not None:
        if use_field not in grid_metadata["layers"][process_layer]["field_names"]:
            names = grid_metadata["layers"][process_layer]["field_names"]
            raise ValueError(
                f"Requested field not found. Fields available are: {names}"
            )

    generated = []

    # For the sake of good reporting - lets first establish how many features intersect
    # the raster.

    if verbose:
        print("Finding intersections.")

    intersections = 0
    for _ in range(feature_count):
        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()

        if not ogr_bbox_intersects(raster_extent, geom.GetEnvelope()):
            continue

        intersections += 1

    layer.ResetReading()

    if verbose:
        print(f"Found {intersections} intersections.")

    if intersections == 0:
        print("Warning: Found 0 intersections. Returning empty list.")
        return ([], None)

    # TODO: Replace this in gdal. 3.1
    driver = ogr.GetDriverByName("Esri Shapefile")

    clipped = 0
    for _ in range(feature_count):

        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()

        if not ogr_bbox_intersects(raster_extent, geom.GetEnvelope()):
            continue

        if verbose == 1:
            progress(clipped, intersections - 1, "clip_grid")

        fid = feature.GetFID()

        test_ds_path = f"/vsimem/grid_{uuid4().int}.shp"
        test_ds = driver.CreateDataSource(test_ds_path)
        test_ds_lyr = test_ds.CreateLayer(
            "mem_layer_grid",
            geom_type=geom_type,
            srs=raster_metadata["projection_osr"],
        )
        test_ds_lyr.CreateFeature(feature.Clone())
        test_ds.FlushCache()

        out_name = None

        if use_field is not None:
            out_name = f"{out_dir}{feature.GetField(use_field)}{filetype}"
        else:
            out_name = f"{out_dir}{name}_{fid}{filetype}"

        clip_raster(
            ref,
            test_ds_path,
            out_path=out_name,
            adjust_bbox=True,
            crop_to_geom=True,
            all_touch=False,
            postfix="",
            prefix="",
            creation_options=default_options(creation_options),
            verbose=0,
        )

        generated.append(out_name)
        clipped += 1

    if generate_vrt:
        vrt_name = f"{out_dir}{name}.vrt"
        stack_rasters_vrt(generated, vrt_name, seperate=False)

        return (generated, vrt_name)

    return generated