Esempio n. 1
0
    def test_construct_rolling_windows_with_end_date(
        self,
        feature_set_dataframe,
        rolling_windows_output_feature_set_dataframe_base_date,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.DOUBLE),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.DOUBLE),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 day", "1 week"])

        # act
        output_df = feature_set.construct(
            feature_set_dataframe, client=spark_client,
            end_date="2016-04-18").orderBy("timestamp")

        target_df = rolling_windows_output_feature_set_dataframe_base_date.orderBy(
            feature_set.timestamp_column).select(feature_set.columns)

        # assert
        assert_dataframe_equality(output_df, target_df)
Esempio n. 2
0
    def test_h3_feature_set(self, h3_input_df, h3_target_df):
        spark_client = SparkClient()

        feature_set = AggregatedFeatureSet(
            name="h3_test",
            entity="h3geolocation",
            description="Test",
            keys=[
                KeyFeature(
                    name="h3_id",
                    description="The h3 hash ID",
                    dtype=DataType.DOUBLE,
                    transformation=H3HashTransform(
                        h3_resolutions=[6, 7, 8, 9, 10, 11, 12],
                        lat_column="lat",
                        lng_column="lng",
                    ).with_stack(),
                )
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="house_id",
                    description="Count of house ids over a day.",
                    transformation=AggregatedTransform(
                        functions=[Function(F.count, DataType.BIGINT)]),
                ),
            ],
        ).with_windows(definitions=["1 day"])

        output_df = feature_set.construct(h3_input_df,
                                          client=spark_client,
                                          end_date="2016-04-14")

        assert_dataframe_equality(output_df, h3_target_df)
Esempio n. 3
0
    def test_feature_transform_with_distinct_empty_subset(
            self, timestamp_c, feature_set_with_distinct_dataframe):
        spark_client = SparkClient()

        with pytest.raises(ValueError,
                           match="The distinct subset param can't be empty."):
            AggregatedFeatureSet(
                name="name",
                entity="entity",
                description="description",
                features=[
                    Feature(
                        name="feature",
                        description="test",
                        transformation=AggregatedTransform(functions=[
                            Function(functions.sum, DataType.INTEGER)
                        ]),
                    ),
                ],
                keys=[
                    KeyFeature(name="h3",
                               description="test",
                               dtype=DataType.STRING)
                ],
                timestamp=timestamp_c,
            ).with_windows(["3 days"]).with_distinct(
                subset=[],
                keep="first").construct(feature_set_with_distinct_dataframe,
                                        spark_client,
                                        end_date="2020-01-10")
    def test_aggregations_with_filter_expression(self, spark_context):
        # arrange
        test_feature = Feature(
            name="feature_with_filter",
            description="unit test",
            transformation=AggregatedTransform(
                functions=[
                    Function(functions.avg, DataType.DOUBLE),
                    Function(functions.min, DataType.DOUBLE),
                    Function(functions.max, DataType.DOUBLE),
                ],
                filter_expression="type = 'a'",
            ),
            from_column="feature",
        )
        target_aggregations = [
            agg(
                functions.when(functions.expr("type = 'a'"),
                               functions.col("feature")))
            for agg in [functions.avg, functions.min, functions.max]
        ]

        # act
        output_aggregations = [
            agg.function for agg in test_feature.transformation.aggregations
        ]

        # assert

        # cast to string to compare the columns definitions because direct column
        # comparison was not working
        assert str(target_aggregations) == str(output_aggregations)
Esempio n. 5
0
    def test_feature_transform_with_distinct(
        self,
        timestamp_c,
        feature_set_with_distinct_dataframe,
        target_with_distinct_dataframe,
    ):
        spark_client = SparkClient()

        fs = (AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature",
                    description="test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.sum, DataType.INTEGER)]),
                ),
            ],
            keys=[
                KeyFeature(name="h3",
                           description="test",
                           dtype=DataType.STRING)
            ],
            timestamp=timestamp_c,
        ).with_windows(["3 days"]).with_distinct(subset=["id"], keep="last"))

        # assert
        output_df = fs.construct(feature_set_with_distinct_dataframe,
                                 spark_client,
                                 end_date="2020-01-10")
        assert_dataframe_equality(output_df, target_with_distinct_dataframe)
Esempio n. 6
0
    def test_construct_without_window(
        self,
        feature_set_dataframe,
        target_df_without_window,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    dtype=DataType.DOUBLE,
                    transformation=AggregatedTransform(
                        functions=[Function(F.avg, DataType.DOUBLE)]),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    dtype=DataType.FLOAT,
                    transformation=AggregatedTransform(
                        functions=[Function(F.count, DataType.BIGINT)]),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(from_column="fixed_ts"),
        )

        # act
        output_df = feature_set.construct(feature_set_dataframe,
                                          client=spark_client)

        # assert
        assert_dataframe_equality(output_df, target_df_without_window)
 def test_blank_aggregation(self, feature_set_dataframe):
     with pytest.raises(ValueError):
         Feature(
             name="feature1",
             description="unit test",
             transformation=AggregatedTransform(
                 functions=[Function(func="", data_type="")]),
         )
 def test_unsupported_aggregation(self, feature_set_dataframe):
     with pytest.raises(TypeError):
         Feature(
             name="feature1",
             description="unit test",
             transformation=AggregatedTransform(
                 functions=[Function("median", DataType.DOUBLE)]),
         )
Esempio n. 9
0
    def test_agg_feature_set_with_window(self, key_id, timestamp_c, dataframe,
                                         rolling_windows_agg_dataframe):
        spark_client = SparkClient()

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="unit test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.avg, DataType.FLOAT)]),
                ),
                Feature(
                    name="feature2",
                    description="unit test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.avg, DataType.FLOAT)]),
                ),
            ],
            keys=[key_id],
            timestamp=timestamp_c,
        ).with_windows(definitions=["1 week"])

        # raises without end date
        with pytest.raises(ValueError):
            _ = fs.construct(dataframe, spark_client)

        # filters with date smaller then mocked max
        output_df = fs.construct(dataframe,
                                 spark_client,
                                 end_date="2016-04-17")
        assert output_df.count() < rolling_windows_agg_dataframe.count()
        output_df = fs.construct(dataframe,
                                 spark_client,
                                 end_date="2016-05-01")
        assert_dataframe_equality(output_df, rolling_windows_agg_dataframe)
    def test_feature_transform(self, feature_set_dataframe, target_df_agg):
        test_feature = Feature(
            name="feature1",
            description="unit test",
            transformation=AggregatedTransform(functions=[
                Function(functions.avg, DataType.DOUBLE),
                Function(functions.stddev_pop, DataType.DOUBLE),
            ]),
        )

        # aggregated feature transform won't run transformations
        # and depends on the feature set
        with pytest.raises(NotImplementedError):
            _ = test_feature.transform(feature_set_dataframe)
Esempio n. 11
0
    def test_run_agg_with_end_date(self, spark_session):
        test_pipeline = FeatureSetPipeline(
            spark_client=SparkClient(),
            source=Mock(
                spec=Source,
                readers=[TableReader(id="source_a", database="db", table="table",)],
                query="select * from source_a",
            ),
            feature_set=Mock(
                spec=AggregatedFeatureSet,
                name="feature_set",
                entity="entity",
                description="description",
                keys=[
                    KeyFeature(
                        name="user_id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(from_column="ts"),
                features=[
                    Feature(
                        name="listing_page_viewed__rent_per_month",
                        description="Average of something.",
                        transformation=AggregatedTransform(
                            functions=[
                                Function(functions.avg, DataType.FLOAT),
                                Function(functions.stddev_pop, DataType.FLOAT),
                            ],
                        ),
                    ),
                ],
            ),
            sink=Mock(
                spec=Sink, writers=[HistoricalFeatureStoreWriter(db_config=None)],
            ),
        )

        # feature_set need to return a real df for streaming validation
        sample_df = spark_session.createDataFrame([{"a": "x", "b": "y", "c": "3"}])
        test_pipeline.feature_set.construct.return_value = sample_df

        test_pipeline.run(end_date="2016-04-18")

        test_pipeline.source.construct.assert_called_once()
        test_pipeline.feature_set.construct.assert_called_once()
        test_pipeline.sink.flush.assert_called_once()
        test_pipeline.sink.validate.assert_called_once()
    def test_output_columns(self):
        test_feature = Feature(
            name="feature1",
            description="unit test",
            transformation=AggregatedTransform(functions=[
                Function(functions.avg, DataType.DOUBLE),
                Function(functions.stddev_pop, DataType.DOUBLE),
            ]),
        )

        df_columns = test_feature.get_output_columns()

        assert all([
            a == b for a, b in zip(
                df_columns,
                ["feature1__avg", "feature1__stddev_pop"],
            )
        ])
 def test_feature_set_with_invalid_feature(self, key_id, timestamp_c,
                                           dataframe):
     spark_client = SparkClient()
     with pytest.raises(ValueError):
         FeatureSet(
             name="name",
             entity="entity",
             description="description",
             features=[
                 Feature(
                     name="feature1",
                     description="test",
                     transformation=AggregatedTransform(
                         functions=[Function(F.avg, DataType.FLOAT)]),
                 ),
             ],
             keys=[key_id],
             timestamp=timestamp_c,
         ).construct(dataframe, spark_client)
Esempio n. 14
0
    def test_construct_with_pivot(
        self,
        feature_set_df_pivot,
        target_df_pivot_agg,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature",
                    description="unit test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.FLOAT),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                    from_column="feature1",
                )
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(from_column="fixed_ts"),
        ).with_pivot("pivot_col", ["S", "N"])

        # act
        output_df = feature_set.construct(feature_set_df_pivot,
                                          client=spark_client)

        # assert
        assert_dataframe_equality(output_df, target_df_pivot_agg)
Esempio n. 15
0
    def test_construct_rolling_windows_without_end_date(
            self, feature_set_dataframe,
            rolling_windows_output_feature_set_dataframe):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.DOUBLE),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 day", "1 week"], )

        # act & assert
        with pytest.raises(ValueError):
            _ = feature_set.construct(feature_set_dataframe,
                                      client=spark_client)
Esempio n. 16
0
    def test_get_schema(self):
        expected_schema = [
            {
                "column_name": "id",
                "type": LongType(),
                "primary_key": True
            },
            {
                "column_name": "timestamp",
                "type": TimestampType(),
                "primary_key": False
            },
            {
                "column_name": "feature1__avg_over_1_week_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name": "feature1__avg_over_2_days_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_1_week_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_2_days_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name": "feature2__count_over_1_week_rolling_windows",
                "type": ArrayType(StringType(), True),
                "primary_key": False,
            },
            {
                "column_name": "feature2__count_over_2_days_rolling_windows",
                "type": ArrayType(StringType(), True),
                "primary_key": False,
            },
        ]

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(functions.avg, DataType.DOUBLE),
                        Function(functions.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(functions.count, DataType.ARRAY_STRING)
                    ]),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.BIGINT,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 week", "2 days"])

        schema = feature_set.get_schema()

        assert schema == expected_schema
Esempio n. 17
0
    def test_feature_transform_with_data_type_array(self, spark_context,
                                                    spark_session):
        # arrange
        input_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 20
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 30
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10
            },
        ]
        target_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature__collect_set": [30.0, 20.0, 10.0],
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature__collect_set": [10.0],
            },
        ]
        input_df = create_df_from_collection(
            input_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))
        target_df = create_df_from_collection(
            target_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            keys=[
                KeyFeature(name="id",
                           description="test",
                           dtype=DataType.INTEGER)
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="feature",
                    description="aggregations with ",
                    dtype=DataType.BIGINT,
                    transformation=AggregatedTransform(functions=[
                        Function(functions.collect_set, DataType.ARRAY_FLOAT),
                    ], ),
                    from_column="feature",
                ),
            ],
        )

        # act
        output_df = fs.construct(input_df, SparkClient())

        # assert
        assert_dataframe_equality(target_df, output_df)
Esempio n. 18
0
    def test_feature_transform_with_filter_expression(self, spark_context,
                                                      spark_session):
        # arrange
        input_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10,
                "type": "a",
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 20,
                "type": "a",
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 30,
                "type": "b",
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10,
                "type": "a",
            },
        ]
        target_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature_only_type_a__avg": 15.0,
                "feature_only_type_a__min": 10,
                "feature_only_type_a__max": 20,
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature_only_type_a__avg": 10.0,
                "feature_only_type_a__min": 10,
                "feature_only_type_a__max": 10,
            },
        ]
        input_df = create_df_from_collection(
            input_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))
        target_df = create_df_from_collection(
            target_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            keys=[
                KeyFeature(name="id",
                           description="test",
                           dtype=DataType.INTEGER)
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="feature_only_type_a",
                    description="aggregations only when type = a",
                    dtype=DataType.BIGINT,
                    transformation=AggregatedTransform(
                        functions=[
                            Function(functions.avg, DataType.FLOAT),
                            Function(functions.min, DataType.FLOAT),
                            Function(functions.max, DataType.FLOAT),
                        ],
                        filter_expression="type = 'a'",
                    ),
                    from_column="feature",
                ),
            ],
        )

        # act
        output_df = fs.construct(input_df, SparkClient())

        # assert
        assert_dataframe_equality(target_df, output_df)