Esempio n. 1
0
            "s2": s2m2,
            # "s3": es3p1,
            # "s4": es4p2,
        }
    },
    {
        "policies": {
            "b1": p1m3,
            "b2": p2m3
        },
        "variables": {
            "s1": s1m3,
            "s2": s2m3,
            # "s3": es3p1,
            # "s4": es4p2,
        }
    }
]

sim_config_dict = {"N": 1, "T": range(5)}

sim_config = config_sim(sim_config_dict)

exp = Experiment()
exp.append_model(model_id='sys_model_1',
                 sim_configs=sim_config,
                 initial_state=genesis_states,
                 env_processes=env_processes,
                 partial_state_update_blocks=partial_state_update_block,
                 policy_ops=[lambda a, b: a + b])
Esempio n. 2
0
        }
    },
    "m3": {
        "policies": {
            "b1": p1m3,
            "b2": p2m3
        },
        "states": {
            "s1": s1m3,
            "s2": s2m3
        }
    }
}

sim_config_dict = {
        "N": 3,
        "T": range(5),
}


sim_config = config_sim(sim_config_dict)

exp = Experiment()
exp.append_model(
    model_id='sys_model_1',
    sim_configs=sim_config,
    initial_state=genesis_states,
    env_processes=env_processes,
    partial_state_update_blocks=partial_state_update_block
)
Esempio n. 3
0
            "b2": p2m3
        },
        "states": {
            "s1": s1m3,
            "s2": s2m3
        }
    }
}

sim_config_dict = {
    "N": 3,
    "T": range(5),
}

sim_config = config_sim(sim_config_dict)

exp = Experiment()
exp.append_model(
    # config_list=configs,
    user_id='user_b',
    sim_configs=sim_config,
    initial_state=genesis_states,
    env_processes=env_processes,
    partial_state_update_blocks=partial_state_update_block)

multi_exp.append_model(model_id='sys_model_2',
                       sim_configs=sim_config,
                       initial_state=genesis_states,
                       env_processes=env_processes,
                       partial_state_update_blocks=partial_state_update_block)
    },
    "m2": {
        "policies": {
            "p1": p1m2,
            "p2": p2m2
        },
        "variables": variables
    },
    "m3": {
        "policies": {
            "p1": p1m3,
            "p2": p2m3
        },
        "variables": variables
    }
}

sim_config = config_sim({
    "N": 1,
    "T": range(3),
})

exp = Experiment()
exp.append_model(
    sim_configs=sim_config,
    initial_state=genesis_states,
    partial_state_update_blocks=partial_state_update_block,
    policy_ops=[lambda a, b: a + b,
                lambda y: y * 2]  # Default: lambda a, b: a + b
)
Esempio n. 5
0
                                                             f=sweeped)

# Genesis States
genesis_states = {'alpha': 0, 'beta': 0, 'policies': {}, 'sweeped': {}}

# Environment Process
env_process['sweeped'] = env_timestep_trigger(
    trigger_field='timestep',
    trigger_vals=[5],
    funct_list=[lambda _g, x: _g['beta']])

sim_config = config_sim({
    "N": 2,
    "T": range(5),
    "M": g,  # Optional
})

# New Convention
partial_state_update_blocks = psub_list(psu_block, psu_steps)

exp = Experiment()
exp.append_model(sim_configs=sim_config,
                 initial_state=genesis_states,
                 env_processes=env_process,
                 partial_state_update_blocks=partial_state_update_blocks)
experiment.append_model(
    sim_configs=sim_config,
    initial_state=genesis_states,
    env_processes=env_process,
    partial_state_update_blocks=partial_state_update_blocks)
Esempio n. 6
0
from cadCAD.configuration import Experiment
from cadCAD.configuration.utils import config_sim
from .state_variables import genesis_states
from .partial_state_update_block import partial_state_update_block
from .sys_params import sys_params

sim_config = config_sim({
    'N': 1,  # number of monte carlo runs
    'T': range(1000),  # number of timesteps
    'M': sys_params,  # simulation parameters
})

exp = Experiment()

exp.append_model(sim_configs=sim_config,
                 model_id='sys_model_j',
                 initial_state=genesis_states,
                 partial_state_update_blocks=partial_state_update_block)
Esempio n. 7
0
    '3rd_to_last_x': [],
    '4th_to_last_x': []
}

PSUB = {"policies": policies, "variables": variables}

psubs = {"PSUB1": PSUB, "PSUB2": PSUB, "PSUB3": PSUB}

sim_config = config_sim({
    "N": 1,
    "T": range(3),
})

exp = Experiment()
exp.append_model(model_id='hist_state_access',
                 sim_configs=sim_config,
                 initial_state=genesis_states,
                 partial_state_update_blocks=psubs)

exec_mode = ExecutionMode()
local_proc_ctx = ExecutionContext(context=exec_mode.local_mode)
run = Executor(exec_context=local_proc_ctx, configs=exp.configs)

raw_result, tensor_field, sessions = run.execute()
result = pd.DataFrame(raw_result)
cols = [
    'run', 'substep', 'timestep', 'x', 'nonexsistant', 'last_x',
    '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x'
]
result = result[cols]

print()
import json
import os
import unittest, pandas as pd
from cadCAD.configuration import Experiment
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from testing.models import param_sweep, policy_aggregation

exp = Experiment()
sys_model_A_id = "sys_model_A"
exp.append_model(
    model_id=sys_model_A_id,
    sim_configs=param_sweep.sim_config,
    initial_state=param_sweep.genesis_states,
    env_processes=param_sweep.env_process,
    partial_state_update_blocks=param_sweep.partial_state_update_blocks
)
sys_model_B_id = "sys_model_B"
exp.append_model(
    model_id=sys_model_B_id,
    sim_configs=param_sweep.sim_config,
    initial_state=param_sweep.genesis_states,
    env_processes=param_sweep.env_process,
    partial_state_update_blocks=param_sweep.partial_state_update_blocks
)
sys_model_C_id = "sys_model_C"
exp.append_model(
    model_id=sys_model_C_id,
    sim_configs=policy_aggregation.sim_config,
    initial_state=policy_aggregation.genesis_states,
    partial_state_update_blocks=policy_aggregation.partial_state_update_block,
    policy_ops=[lambda a, b: a + b, lambda y: y * 2] # Default: lambda a, b: a + b
Esempio n. 9
0
    psu_block[m]["variables"]['alpha'] = alpha_plus_gamma
    psu_block[m]["variables"]['alpha_plus_gamma'] = alpha
    psu_block[m]["variables"]['beta'] = beta
    psu_block[m]['variables']['policies'] = policies
    psu_block[m]["variables"]['sweeped'] = var_timestep_trigger(y='sweeped', f=sweeped)

psubs = psub_list(psu_block, psu_steps)
print()
pp.pprint(psu_block)
print()

exp = Experiment()
exp.append_model(
    model_id='param_sweep',
    sim_configs=sim_config,
    initial_state=genesis_states,
    env_processes=env_process,
    partial_state_update_blocks=psubs
)

exec_mode = ExecutionMode()
local_proc_ctx = ExecutionContext(context=exec_mode.local_mode)
run = Executor(exec_context=local_proc_ctx, configs=exp.configs)

raw_result, tensor_field, sessions = run.execute()
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))