def _postAnalyze(self): """ Write the logs. """ self._paths = [] self.logger.write( '%s\nFRACTIONAL ERROR (Measured vs Entered)' % ('='*80)) self._process('Error', 'wDev', 'lDev', self.trackDeviations) self.logger.write('%s\nFRACTIONAL UNCERTAINTY ERROR' % ('='*80)) self._process( 'Uncertainty Error', 'wDelta', 'lDelta', None, absoluteOnly=True) csv = CsvWriter( path=self.getPath('Length-Width-Deviations.csv'), autoIndexFieldName='Index', fields=[ ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('wDelta', 'Width Deviation'), ('lDelta', 'Length Deviation') ]) for entry in self.entries: track = entry['track'] csv.createRow( uid=track.uid, fingerprint=track.fingerprint, wDelta=entry.get('wDelta', -1.0), lDelta=entry.get('lDelta', -1.0) ) csv.save() self._processAspectRatios() self.mergePdfs(self._paths)
def _preAnalyze(self): """_preDeviations doc...""" self.noData = 0 self.entries = [] self._paths = [] self.initializeFolder(self.MAPS_FOLDER_NAME) csv = CsvWriter() csv.path = self.getPath('Pace-Length-Deviations.csv', isFile=True) csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('entered', 'Field'), ('measured', 'Measured'), ('dev', 'Deviation'), ('delta', 'Fractional Error'), ('pairedFingerprint', 'Track Pair Fingerprint'), ('pairedUid', 'Track Pair UID') ) self._csv = csv csv = CsvWriter() csv.path = self.getPath('Pace-Match-Errors.csv', isFile=True) csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('measured', 'Measured') ) self._errorCsv = csv
def _preAnalyze(self): self._tracks = [] csv = CsvWriter() csv.path = self.getPath('Origin-Located.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint') ) self._csv = csv
def _preAnalyze(self): self._uncs = [] self._tracks = [] self.initializeFolder(self.DRAWING_FOLDER_NAME) csv = CsvWriter() csv.path = self.getPath("Large-Rotational-Uncertainties.csv") csv.autoIndexFieldName = "Index" csv.addFields(("uid", "UID"), ("fingerprint", "Fingerprint"), ("rotation", "Rotation")) self._largeUncCsv = csv
def _analyzeTrackway(self, trackway, sitemap): """ @param trackway: @param sitemap: @return: """ self.entries = dict(lp=[], rp=[], lm=[], rm=[]) super(SimulationCsvExporterStage, self)._analyzeTrackway( trackway=trackway, sitemap=sitemap ) csv = CsvWriter( autoIndexFieldName='Index', fields=[ 'lp_name', 'lp_uid', 'lp_x', 'lp_dx', 'lp_y', 'lp_dy', 'rp_name', 'rp_uid', 'rp_x', 'rp_dx', 'rp_y', 'rp_dy', 'lm_name', 'lm_uid', 'lm_x', 'lm_dx', 'lm_y', 'lm_dy', 'rm_name', 'rm_uid', 'rm_x', 'rm_dx', 'rm_y', 'rm_dy' ] ) length = max( len(self.entries['lp']), len(self.entries['rp']), len(self.entries['lm']), len(self.entries['rm']), ) for index in range(length): items = [] for limb_id, entries in self.entries.items(): if index < len(entries): items += entries[index].items() else: items += self._create_entry(limb_id).items() csv.addRow(dict(items)) path = self.owner.settings.fetch('EXPORT_DATA_PATH') if path is None: path = self.owner.getLocalPath('Simulation', 'data', isFile=True) path = FileUtils.makeFilePath(path, trackway.name, 'source.csv') directory = os.path.dirname(path) if not os.path.exists(directory): os.makedirs(directory) if csv.save(path): print('[SAVED]:', path) else: print('[ERROR]: Unable to save CSV at "{}"'.format(path))
def _preAnalyze(self): self._tracks = [] csv = CsvWriter() csv.path = self.getPath('Track-Priority.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('priority', 'Priority'), ('preserved', 'Preserved'), ('cast', 'Cast'), ('outlined', 'Outlined') ) self._csv = csv
def _postAnalyze(self): self.logger.write('%s gauge calculated tracks' % self._count) self._trackwayCsv.save() csv = CsvWriter( path=self.getPath('Simple-Gauge-Errors.csv', isFile=True), autoIndexFieldName='Index', fields=[ ('uid', 'UID'), ('fingerprint', 'Fingerprint') ]) for track in self._errorTracks: csv.createRow(uid=track.uid, fingerprint=track.fingerprint) csv.save() if self._errorTracks: self.logger.write('Failed to calculate gauge for %s tracks' % len(self._errorTracks)) csv = CsvWriter( path=self.getPath('Simple-Gauge-Ignores.csv', isFile=True), autoIndexFieldName='Index', fields=[ ('uid', 'UID'), ('fingerprint', 'Fingerprint') ]) for track in self._ignoreTracks: csv.createRow(uid=track.uid, fingerprint=track.fingerprint) csv.save() if self._ignoreTracks: self.logger.write('%s tracks lacked suitability for gauge calculation' % len( self._ignoreTracks)) plotData = [ ('stride', 'red', 'AU', 'Stride-Normalized Weighted'), ('pace', 'green', 'AU', 'Pace-Normalized Weighted'), ('width', 'blue', 'AU', 'Width-Normalized Weighted'), ('abs', 'purple', 'm', 'Absolute Unweighted') ] for data in plotData: out = [] source = ListUtils.sortListByIndex( source=getattr(self._trackwayGauges, StringUtils.toStr2(data[0])), index=0, inPlace=True) for item in source: out.append(PositionValue2D(x=len(out), y=item[1].value, yUnc=item[1].uncertainty)) self._plotTrackwayGauges(out, *data[1:]) self.mergePdfs(self._paths, 'Gauges.pdf')
def _preAnalyze(self): self._uncs = [] self._tracks = [] self.initializeFolder(self.DRAWING_FOLDER_NAME) csv = CsvWriter() csv.path = self.getPath('Large-Spatial-Uncertainties.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('x', 'X'), ('z', 'Z') ) self._largeUncCsv = csv
def _preAnalyze(self): """_preDeviations doc...""" self.noData = 0 self.entries = [] self._paths = [] csv = CsvWriter() csv.path = self.getPath('Stride-Length-Deviations.csv', isFile=True) csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('entered', 'Entered'), ('measured', 'Measured'), ('dev', 'Deviation'), ('delta', 'Fractional Error')) self._csv = csv
def _preAnalyze(self): """_preAnalyze doc...""" self.cache.set('trackDeviations', {}) self._diffs = [] self._data = [] self._currentDrawing = None csv = CsvWriter() csv.path = self.getPath('Rotation-Report.csv', isFile=True) csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('delta', 'Discrepancy'), ('entered', 'Entered'), ('measured', 'Measured'), ('deviation', 'Deviation'), ('relative', 'Relative'), ('axis', 'Axis'), ('axisPairing', 'Axis Pairing')) self._csv = csv
def _preAnalyze(self): self._trackways = [] self._densityPlots = dict() fields = [ ('name', 'Name'), ('length', 'Length'), ('gauge', 'Gauge'), ('gaugeUnc', 'Gauge Uncertainty'), ('widthNormGauge', 'Width Normalized Gauge'), ('widthNormGaugeUnc', 'Width Normalized Gauge Uncertainty'), ('strideLength', 'Stride Length'), ('strideLengthUnc', 'Stride Length Uncertainty'), ('paceLength', 'Pace Length'), ('paceLengthUnc', 'Pace Length Uncertainty'), ('density', 'Density'), ('densityNorm', 'Normalize Density'), ('densityNormUnc', 'Normalize Density Uncertainty'), ('pesWidth', 'Pes Width'), ('pesWidthUnc', 'Pes Width Uncertainty'), ('pesLength', 'Pes Length'), ('pesLengthUnc', 'Pes Length Uncertainty'), ('manusWidth', 'Manus Width'), ('manusWidthUnc', 'Manus Width Uncertainty'), ('manusLength', 'Manus Length'), ('manusLengthUnc', 'Manus Length Uncertainty') ] csv = CsvWriter() csv.path = self.getPath(self.TRACKWAY_STATS_CSV) csv.autoIndexFieldName = 'Index' csv.addFields(*fields) self._weightedStats = csv csv = CsvWriter() csv.path = self.getPath(self.UNWEIGHTED_TRACKWAY_STATS_CSV) csv.autoIndexFieldName = 'Index' csv.addFields(*fields) self._unweightedStats = csv
def _preAnalyze(self): self._trackwayGauges = self._GAUGE_DATA_NT([], [], [], []) self._paths = [] self._errorTracks = [] self._ignoreTracks = [] self._count = 0 self._trackwayCsv = CsvWriter( path=self.getPath('Trackway-Gauge-Averages.csv'), autoIndexFieldName='Index', fields=[ ('name', 'Name'), ('count', 'Pes Count'), ('abs', 'Absolute'), ('absUnc', 'Abs Unc'), ('stride', 'Stride Norm'), ('strideUnc', 'Stride Unc'), ('pace', 'Pace Norm'), ('paceUnc', 'Pace Unc'), ('width', 'Width Norm'), ('widthUnc', 'Width Unc')])
def _preAnalyze(self): csv = CsvWriter() csv.path = self.getPath('Solo-Track-Report.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint') ) self._soloTrackCsv = csv csv = CsvWriter() csv.path = self.getPath('Corrupt-Track-Report.csv') csv.removeIfSavedEmpty = True csv.autoIndexFieldName = 'Index' csv.addFields( ('i', 'Database Index'), ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('reason', 'Reason')) self._badTrackCsv = csv csv = CsvWriter() csv.path = self.getPath('Unprocessed-Track-Report.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('previous', 'Previous Track UID'), ('next', 'Next Track UID') ) self._unprocessedCsv = csv csv = CsvWriter() csv.path = self.getPath('Unknown-Track-Report.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('hidden', 'Hidden'), ('complete', 'Complete') ) self._unknownCsv = csv csv = CsvWriter() csv.path = self.getPath('Ignored-Track-Report.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('uid', 'UID'), ('sitemap', 'Sitemap Name'), ('fingerprint', 'Fingerprint'), ('hidden', 'Hidden'), ('orphan', 'Orphaned') ) self._orphanCsv = csv csv = CsvWriter() csv.path = self.getPath('Sitemap-Report.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('name', 'Sitemap Name'), ('unprocessed', 'Unprocessed'), ('ignores', 'Ignored'), ('count', 'Count'), ('incomplete', 'Incomplete'), ('completion', 'Completion (%)') ) self._sitemapCsv = csv csv = CsvWriter() csv.path = self.getPath('Trackway-Report.csv') csv.autoIndexFieldName = 'Index' csv.addFields( ('name', 'Name'), ('leftPes', 'Left Pes'), ('rightPes', 'Right Pes'), ('leftManus', 'Left Manus'), ('rightManus', 'Right Manus'), ('incomplete', 'Incomplete'), ('total', 'Total'), ('ready', 'Analysis Ready'), ('complete', 'Completion (%)') ) self._trackwayCsv = csv self._allTracks = dict() #------------------------------------------------------------------------------------------- # CREATE ALL TRACK LISTING # This list is used to find tracks that are not referenced by relationships to # sitemaps, which would never be loaded by standard analysis methods model = Tracks_Track.MASTER session = model.createSession() tracks = session.query(model).all() for t in tracks: self._checkTrackProperties(t, tracks) self._allTracks[t.uid] = dict( uid=t.uid, fingerprint=t.fingerprint, hidden=t.hidden, complete=t.isComplete) session.close()
def _addQuartileEntry(self, label, trackway, data): if not data or len(data) < 4: return if label not in self._quartileStats: csv = CsvWriter() csv.path = self.getPath( '%s-Quartiles.csv' % label.replace(' ', '-'), isFile=True) csv.autoIndexFieldName = 'Index' csv.addFields( ('name', 'Name'), ('normality', 'Normality'), ('unweightedNormality', 'Unweighted Normality'), ('unweightedLowerBound', 'Unweighted Lower Bound'), ('unweightedLowerQuart', 'Unweighted Lower Quartile'), ('unweightedMedian', 'Unweighted Median'), ('unweightedUpperQuart', 'Unweighted Upper Quartile'), ('unweightedUpperBound', 'Unweighted Upper Bound'), ('lowerBound', 'Lower Bound'), ('lowerQuart', 'Lower Quartile'), ('median', 'Median'), ('upperQuart', 'Upper Quartile'), ('upperBound', 'Upper Bound'), ('diffLowerBound', 'Diff Lower Bound'), ('diffLowerQuart', 'Diff Lower Quartile'), ('diffMedian', 'Diff Median'), ('diffUpperQuart', 'Diff Upper Quartile'), ('diffUpperBound', 'Diff Upper Bound') ) self._quartileStats[label] = csv csv = self._quartileStats[label] dd = mstats.density.Distribution(data) unweighted = mstats.density.boundaries.unweighted_two(dd) weighted = mstats.density.boundaries.weighted_two(dd) #----------------------------------------------------------------------- # PLOT DENSITY # Create a density plot for each value p = MultiScatterPlot( title='%s %s Density Distribution' % (trackway.name, label), xLabel=label, yLabel='Probability (AU)') x_values = mstats.density.ops.adaptive_range(dd, 10.0) y_values = dd.probabilities_at(x_values=x_values) p.addPlotSeries( line=True, markers=False, label='Weighted', color='blue', data=zip(x_values, y_values) ) temp = mstats.density.create_distribution( dd.naked_measurement_values(raw=True) ) x_values = mstats.density.ops.adaptive_range(dd, 10.0) y_values = dd.probabilities_at(x_values=x_values) p.addPlotSeries( line=True, markers=False, label='Unweighted', color='red', data=zip(x_values, y_values) ) if label not in self._densityPlots: self._densityPlots[label] = [] self._densityPlots[label].append( p.save(self.getTempFilePath(extension='pdf'))) #----------------------------------------------------------------------- # NORMALITY # Calculate the normality of the weighted and unweighted # distributions as a test against how well they conform to # the Normal distribution calculated from the unweighted data. # # The unweighted Normality test uses a basic bandwidth detection # algorithm to create a uniform Gaussian kernel to populate the # DensityDistribution. It is effectively a density kernel # estimation, but is aggressive in selecting the bandwidth to # prevent over-smoothing multi-modal distributions. if len(data) < 8: normality = -1.0 unweightedNormality = -1.0 else: result = NumericUtils.getMeanAndDeviation(data) mean = result.raw std = result.rawUncertainty normality = mstats.density.ops.overlap( dd, mstats.density.create_distribution([mean], [std]) ) rawValues = [] for value in data: rawValues.append(value.value) ddRaw = mstats.density.create_distribution(rawValues) unweightedNormality = mstats.density.ops.overlap( ddRaw, mstats.density.create_distribution([mean], [std]) ) # Prevent divide by zero unweighted = [ 0.00001 if NumericUtils.equivalent(x, 0) else x for x in unweighted ] csv.addRow({ 'index':trackway.index, 'name':trackway.name, 'normality':normality, 'unweightedNormality':unweightedNormality, 'unweightedLowerBound':unweighted[0], 'unweightedLowerQuart':unweighted[1], 'unweightedMedian' :unweighted[2], 'unweightedUpperQuart':unweighted[3], 'unweightedUpperBound':unweighted[4], 'lowerBound':weighted[0], 'lowerQuart':weighted[1], 'median' :weighted[2], 'upperQuart':weighted[3], 'upperBound':weighted[4], 'diffLowerBound':abs(unweighted[0] - weighted[0])/unweighted[0], 'diffLowerQuart':abs(unweighted[1] - weighted[1])/unweighted[1], 'diffMedian' :abs(unweighted[2] - weighted[2])/unweighted[2], 'diffUpperQuart':abs(unweighted[3] - weighted[3])/unweighted[3], 'diffUpperBound':abs(unweighted[4] - weighted[4])/unweighted[4] })
def _process( self, label, widthKey, lengthKey, trackDeviations, absoluteOnly =False ): """_process doc...""" pl = self.plot ws = [] ls = [] w2D = [] l2D = [] for entry in self.entries: if widthKey in entry: ws.append(entry[widthKey]) if lengthKey in entry: w2D.append(entry[widthKey]) if lengthKey in entry: ls.append(entry[lengthKey]) if widthKey in entry: l2D.append(entry[lengthKey]) plotList = [ ('widths', ws, 'Width', 'b'), ('lengths', ls, 'Length', 'r')] wRes = NumericUtils.getMeanAndDeviation(ws) self.logger.write('Width %ss' % wRes.label) lRes = NumericUtils.getMeanAndDeviation(ls) self.logger.write('Length %ss' % lRes.label) for data in plotList: if not absoluteOnly: d = data[1] self._paths.append( self._makePlot( label, d, data, histRange=(-1.0, 1.0))) self._paths.append( self._makePlot( label, d, data, isLog=True, histRange=(-1.0, 1.0))) # noinspection PyUnresolvedReferences d = np.absolute(np.array(data[1])) self._paths.append( self._makePlot( 'Absolute ' + label, d, data, histRange=(0.0, 1.0))) self._paths.append( self._makePlot( 'Absolute ' + label, d, data, isLog=True, histRange=(0.0, 1.0))) self.owner.createFigure('twoD') pl.hist2d(w2D, l2D, bins=20, range=([-1, 1], [-1, 1])) pl.title('2D %s Distribution' % label) pl.xlabel('Width %s' % label) pl.ylabel('Length %s' % label) pl.xlim(-1.0, 1.0) pl.ylim(-1.0, 1.0) path = self.getTempPath( '%s.pdf' % StringUtils.getRandomString(16), isFile=True) self.owner.saveFigure('twoD', path) self._paths.append(path) csv = CsvWriter() csv.path = self.getPath( '%s-Deviations.csv' % label.replace(' ', '-'), isFile=True) csv.addFields( ('uid', 'UID'), ('fingerprint', 'Fingerprint'), ('wSigma', 'Width Deviation'), ('lSigma', 'Length Deviation') ) count = 0 for entry in self.entries: widthDevSigma = NumericUtils.roundToOrder( abs(entry.get(widthKey, 0.0)/wRes.uncertainty), -2) lengthDevSigma = NumericUtils.roundToOrder( abs(entry.get(lengthKey, 0.0)/lRes.uncertainty), -1) if widthDevSigma > 2.0 or lengthDevSigma > 2.0: count += 1 track = entry['track'] data = dict( wSigma=widthDevSigma, lSigma=lengthDevSigma) if trackDeviations is not None: trackDeviations[track.uid] = data csv.createRow( uid=track.uid, fingerprint=track.fingerprint, **data) if not csv.save(): self.logger.write( '[ERROR]: Failed to save CSV file to %s' % csv.path) percentage = NumericUtils.roundToOrder( 100.0*float(count)/float(len(self.entries)), -2) self.logger.write('%s significant %ss (%s%%)' % ( count, label.lower(), percentage)) if percentage > (100.0 - 95.45): self.logger.write( '[WARNING]: Large deviation count exceeds' + 'normal distribution expectations.')
def write_to_file(trackway, tracks_data): """ @param trackway: @param tracks_data: @return: """ csv = CsvWriter( path="{}.csv".format(trackway.name), autoIndexFieldName="Index", fields=[ "lp_name", "lp_uid", "lp_x", "lp_dx", "lp_y", "lp_dy", "lp_w", "lp_dw", "lp_l", "lp_dl", "rp_name", "rp_uid", "rp_x", "rp_dx", "rp_y", "rp_dy", "rp_w", "rp_dw", "rp_l", "rp_dl", "lm_name", "lm_uid", "lm_x", "lm_dx", "lm_y", "lm_dy", "lm_w", "lm_dw", "lm_l", "lm_dl", "rm_name", "rm_uid", "rm_x", "rm_dx", "rm_y", "rm_dy", "rm_w", "rm_dw", "rm_l", "rm_dl", ], ) count = max([len(ts) if ts else 0 for ts in tracks_data.values()]) for i in range(count): entry = {} for key in ["lp", "rp", "lm", "rm"]: data = tracks_data[key][i] if i < len(tracks_data[key]) else None track = data["track"] if data else None entry.update( { "{}_name".format(key): track.fingerprint if track else "", "{}_uid".format(key): track.uid if track else "", } ) point = track.positionValue if track else None entry.update( { "{}_x".format(key): point.x if point else "", "{}_dx".format(key): point.xUnc if point else "", "{}_y".format(key): point.y if point else "", "{}_dy".format(key): point.yUnc if point else "", } ) length = track.widthValue if track else None entry.update( { "{}_l".format(key): length.value if length else "", "{}_dl".format(key): length.uncertainty if length else "", } ) width = track.widthValue if track else None entry.update( { "{}_w".format(key): width.value if width else "", "{}_dw".format(key): width.uncertainty if width else "", } ) csv.createRow(**entry) csv.save()
class SimpleGaugeStage(CurveOrderedAnalysisStage): """A class for...""" #=============================================================================== # C L A S S _GAUGE_DATA_NT = namedtuple('GAUGE_DATA_NT', ['abs', 'width', 'pace', 'stride']) #_______________________________________________________________________________ def __init__(self, key, owner, **kwargs): """Creates a new instance of SimpleGaugeStage.""" super(SimpleGaugeStage, self).__init__( key, owner, label='Simple Track Gauge', **kwargs) self._paths = [] self._errorTracks = [] self._ignoreTracks = [] self._trackwayGauges = None self._count = 0 self._trackwayCsv = None #=============================================================================== # P R O T E C T E D #_______________________________________________________________________________ def _preAnalyze(self): self._trackwayGauges = self._GAUGE_DATA_NT([], [], [], []) self._paths = [] self._errorTracks = [] self._ignoreTracks = [] self._count = 0 self._trackwayCsv = CsvWriter( path=self.getPath('Trackway-Gauge-Averages.csv'), autoIndexFieldName='Index', fields=[ ('name', 'Name'), ('count', 'Pes Count'), ('abs', 'Absolute'), ('absUnc', 'Abs Unc'), ('stride', 'Stride Norm'), ('strideUnc', 'Stride Unc'), ('pace', 'Pace Norm'), ('paceUnc', 'Pace Unc'), ('width', 'Width Norm'), ('widthUnc', 'Width Unc')]) #_______________________________________________________________________________ def _analyzeSitemap(self, sitemap): self._createDrawing(sitemap, 'SIMPLE-GAUGE', 'Simple-Gauge') super(SimpleGaugeStage, self)._analyzeSitemap(sitemap) self._saveDrawing(sitemap) #_______________________________________________________________________________ def _analyzeTrackway(self, trackway, sitemap): bundle = self.owner.getSeriesBundle(trackway) if not bundle.isReady: # Skip trackways that have incomplete series return data = self._collectGaugeData(bundle, trackway, sitemap) if data['gauges'].abs: self._processGaugeData(bundle, trackway, data) #_______________________________________________________________________________ def _collectGaugeData(self, bundle, trackway, sitemap): """ Collects the trackway gauge data by generating projections for each series and then iterating over every track in the trackway and extracting the gauge information from the CurveSeries projection data. @param bundle: TrackSeriesBundle @param trackway: Tracks_Trackway @param sitemap: Tracks_Sitemap @return: dict """ trackway.cache.set('data', {'points':[], 'gauges':self._GAUGE_DATA_NT([], [], [], [])}) for key, series in bundle.items(): series.cache.set('referenceWidth', series.averageTrackWidth) if series.count < 2: continue curve = CurveSeries(stage=self, series=series) try: curve.compute() except Exception as err: self.logger.writeError([ '[ERROR]: Failed to compute track curve projection', 'TRACKWAY: %s' % trackway.name, 'SERIES: %s[%s]' % (series.fingerprint, series.count) ], err) raise curve.draw(sitemap.cache.get('drawing'), drawPairs=False) series.cache.set('curve', curve) super(SimpleGaugeStage, self)._analyzeTrackway(trackway=trackway, sitemap=sitemap) for key, series in bundle.items(): series.cache.remove('referenceWidth') return trackway.cache.extract('data') #_______________________________________________________________________________ def _processGaugeData(self, bundle, trackway, data): pesCount = bundle.leftPes.count + bundle.rightPes.count record = {'name':trackway.name, 'count':pesCount} gaugeData = data['gauges'] try: value = NumericUtils.getWeightedMeanAndDeviation(gaugeData.abs) record['abs'] = value.value record['absUnc'] = value.uncertainty self._trackwayGauges.abs.append((pesCount, value)) except ZeroDivisionError: return widthValue = NumericUtils.getWeightedMeanAndDeviation(gaugeData.width) record['width'] = widthValue.value record['widthUnc'] = widthValue.uncertainty self._trackwayGauges.width.append((pesCount, widthValue)) if gaugeData.pace: value = NumericUtils.getWeightedMeanAndDeviation(gaugeData.pace) record['pace'] = value.value record['paceUnc'] = value.uncertainty self._trackwayGauges.pace.append((pesCount, value)) else: record['pace'] = '' record['paceUnc'] = '' if gaugeData.stride: value = NumericUtils.getWeightedMeanAndDeviation(gaugeData.stride) record['stride'] = value.value record['strideUnc'] = value.uncertainty self._trackwayGauges.stride.append((pesCount, value)) else: record['stride'] = '' record['strideUnc'] = '' self._trackwayCsv.addRow(record) plot = ScatterPlot( data=data['points'], title='%s Width-Normalized Gauges (%s)' % (trackway.name, widthValue.label), xLabel='Track Position (m)', yLabel='Gauge (AU)') self._paths.append(plot.save(self.getTempFilePath(extension='pdf'))) analysisTrackway = trackway.getAnalysisPair(self.analysisSession) analysisTrackway.simpleGauge = widthValue.raw analysisTrackway.simpleGaugeUnc = widthValue.rawUncertainty #_______________________________________________________________________________ def _analyzeTrack(self, track, series, trackway, sitemap): if series.count < 1 or not track.pes: return segmentPair = None segmentSeries = None skipped = 0 for key, otherSeries in series.bundle.items(): if not otherSeries.pes: continue if otherSeries == series or otherSeries.left == series.left or otherSeries.count < 2: # If the series isn't suitable for comparison then mark this as a skipped attempt # and continue. skipped += 1 continue segment = otherSeries.cache.get('curve').getTrackSegment(track) if segment is None: continue for pair in segment.pairs: if pair['track'] != track: continue if segmentPair is None or pair['line'].length.raw < segmentPair['line'].length.raw: # Store the shortest of the available gauge lengths segmentPair = pair segmentSeries = otherSeries break if skipped == 4: # If skipped is 4 it means that no suitable series existed for calculating a gauge # value and the method should abort quietly self._ignoreTracks.append(track) return if segmentPair is None: self._errorTracks.append(track) return color = 'blue' if segmentSeries.pes == series.pes else 'orange' data = trackway.cache.get('data') gauges = data['gauges'] line = segmentPair['line'] sitemap.cache.get('drawing').lineSegment( line, stroke=color, stroke_width=1, stroke_opacity='0.5') length = line.length gauges.abs.append(length) analysisTrack = track.getAnalysisPair(self.analysisSession) analysisTrack.simpleGauge = line.length.raw analysisTrack.simpleGaugeUnc = line.length.rawUncertainty widthNormGauge = NumericUtils.divideValueUncertainties( numeratorValue=length, denominatorValue=series.cache.get('referenceWidth')) gauges.width.append(widthNormGauge) point = PositionValue2D( x=analysisTrack.curvePosition, xUnc=0.0, y=widthNormGauge.value, yUnc=widthNormGauge.uncertainty) data['points'].append(point) if analysisTrack.paceLength: gauges.pace.append(NumericUtils.divideValueUncertainties( length, analysisTrack.paceLengthValue)) if analysisTrack.strideLength: gauges.stride.append(NumericUtils.divideValueUncertainties( length, analysisTrack.strideLengthValue)) self._count += 1 #_______________________________________________________________________________ def _postAnalyze(self): self.logger.write('%s gauge calculated tracks' % self._count) self._trackwayCsv.save() csv = CsvWriter( path=self.getPath('Simple-Gauge-Errors.csv', isFile=True), autoIndexFieldName='Index', fields=[ ('uid', 'UID'), ('fingerprint', 'Fingerprint') ]) for track in self._errorTracks: csv.createRow(uid=track.uid, fingerprint=track.fingerprint) csv.save() if self._errorTracks: self.logger.write('Failed to calculate gauge for %s tracks' % len(self._errorTracks)) csv = CsvWriter( path=self.getPath('Simple-Gauge-Ignores.csv', isFile=True), autoIndexFieldName='Index', fields=[ ('uid', 'UID'), ('fingerprint', 'Fingerprint') ]) for track in self._ignoreTracks: csv.createRow(uid=track.uid, fingerprint=track.fingerprint) csv.save() if self._ignoreTracks: self.logger.write('%s tracks lacked suitability for gauge calculation' % len( self._ignoreTracks)) plotData = [ ('stride', 'red', 'AU', 'Stride-Normalized Weighted'), ('pace', 'green', 'AU', 'Pace-Normalized Weighted'), ('width', 'blue', 'AU', 'Width-Normalized Weighted'), ('abs', 'purple', 'm', 'Absolute Unweighted') ] for data in plotData: out = [] source = ListUtils.sortListByIndex( source=getattr(self._trackwayGauges, StringUtils.toStr2(data[0])), index=0, inPlace=True) for item in source: out.append(PositionValue2D(x=len(out), y=item[1].value, yUnc=item[1].uncertainty)) self._plotTrackwayGauges(out, *data[1:]) self.mergePdfs(self._paths, 'Gauges.pdf') #_______________________________________________________________________________ def _plotTrackwayGauges(self, points, color, unit, heading): histData = [] for p in points: histData.append(p.yValue.value) plot = Histogram( data=histData, title='%s Trackway Gauges' % heading, xLabel='Averaged Trackway Gauge (%s)' % unit, yLabel='Frequency', color=color) self._paths.insert(0, plot.save(self.getTempFilePath(extension='pdf'))) plot = ScatterPlot( data=ListUtils.sortObjectList(points, 'y', inPlace=True), title='%s Trackway Gauges' % heading, xLabel='Trackway Pes Count (#)', yLabel='Averaged Trackway Gauge (%s)' % unit, color=color) self._paths.insert(0, plot.save(self.getTempFilePath(extension='pdf')))