Esempio n. 1
0
 def tall_loss(self, positive, negative, query, lw=1):
     scores_p = self.distance_function(positive, query)
     scores_n = self.distance_function(negative, query)
     alpha_c = 1
     alpha_w = 1
     exp_p = L.Exp(scores_p, scale=-1)
     exp_n = L.Exp(scores_n)
     log_p = L.Log(exp_p, shift=1)
     log_n = L.Log(exp_n, shift=1)
     scale_p = L.Power(log_p, scale=alpha_c)
     scale_n = L.Power(log_n, scale=alpha_w)
     all_scores = L.Concat(scale_p, scale_n, axis=0)
     return L.Reduction(all_scores, operation=4, loss_weight=[lw])
def weight_edges(bottom):
    bottom_avg = L.Convolution(bottom,
                               convolution_param=dict(num_output=9,
                                                      kernel_size=1,
                                                      stride=1,
                                                      pad=0,
                                                      bias_term=False,
                                                      weight_filler=dict(
                                                          type='constant',
                                                          value=1.0)),
                               param=[{
                                   'lr_mult': 0,
                                   'decay_mult': 0
                               }])

    weight = L.Exp(bottom_avg, exp_param=dict(scale=-1.0))
    return weight
 def test_exp4(self):
     n = caffe.NetSpec()
     n.input1 = L.Input(shape=make_shape([6, 4, 64, 64]))
     n.exp1 = L.Exp(n.input1, base=2.0, scale=0.5)
     self._test_model(*self._netspec_to_model(n, 'exp4'))
 def test_exp3(self):
     n = caffe.NetSpec()
     n.input1 = L.Input(shape=make_shape([6, 4, 64, 64]))
     n.exp1 = L.Exp(n.input1, scale=0.5, shift=0.01)
     self._test_model(*self._netspec_to_model(n, 'exp3'))
Esempio n. 5
0
 def net():
     n = caffe.NetSpec()
     n.data = L.Input(input_param=dict(shape=dict(dim=data_shape)))
     n.dataout = L.Exp(n.data, base=_base, scale=_scale, shift=_shift)
     return n.to_proto()