Esempio n. 1
0
def RunNet(name):
    """Runs a given net.

    Inputs:
      name: the name of the net, or a reference to the net.
    Returns:
      True or an exception.
    """
    return C.run_net(StringifyNetName(name))
Esempio n. 2
0
def RunNet(name, num_iter=1):
    """Runs a given net.

    Inputs:
      name: the name of the net, or a reference to the net.
      num_iter: number of iterations to run
    Returns:
      True or an exception.
    """
    return C.run_net(StringifyNetName(name), num_iter)
Esempio n. 3
0
def RunNet(name, num_iter=1, allow_fail=False):
    """Runs a given net.

    Inputs:
      name: the name of the net, or a reference to the net.
      num_iter: number of iterations to run
      allow_fail: if True, does not assert on net exec failure but returns False
    Returns:
      True or an exception.
    """
    return C.run_net(StringifyNetName(name), num_iter, allow_fail)
Esempio n. 4
0
    C.create_net(net_def.SerializeToString())

C.feed_blob('data', img, device_opts.SerializeToString())
### Debug code
"""
for b in workspace.Blobs():
    x = workspace.FetchBlob(b)
    if type(x) != str:
        print(str(b) + ': ' + str(x.shape))

"""
### End of debug code

print('Running net ' + workspace.GetNetName(net_def) + '...')

C.run_net(workspace.GetNetName(net_def), 1, False)

# Turn it into something we can play with and examine which is in a multi-dimensional array
results = workspace.FetchBlob('prob')
#print("results shape: ", results.shape)

# Quick way to get the top-1 prediction result
# Squeeze out the unnecessary axis. This returns a 1-D array of length 1000
preds = np.squeeze(results)
# Get the prediction and the confidence by finding the maximum value and index of maximum value in preds array
curr_pred, curr_conf = max(enumerate(preds), key=operator.itemgetter(1))
print("Prediction: ", curr_pred)
print("Confidence: ", curr_conf)

# the rest of this is digging through the results 
results = np.delete(results, 1)