def runOpOnInput(
    device_option,
    op,
    inputs,
    input_device_options=None,
):
    op = copy.deepcopy(op)
    op.device_option.CopyFrom(device_option)

    with temp_workspace():
        if (len(op.input) > len(inputs)):
            raise ValueError(
                'must supply an input for each input on the op: %s vs %s' %
                (op.input, inputs))
        _input_device_options = input_device_options or \
            core.InferOpBlobDevicesAsDict(op)[0]
        for (n, b) in zip(op.input, inputs):
            workspace.FeedBlob(
                n,
                b,
                device_option=_input_device_options.get(n, device_option)
            )
        workspace.RunOperatorOnce(op)
        outputs_to_check = list(range(len(op.output)))
        outs = []
        for output_index in outputs_to_check:
            output_blob_name = op.output[output_index]
            output = workspace.FetchBlob(output_blob_name)
            outs.append(output)
        return outs
def runOpBenchmark(
    device_option,
    op,
    inputs,
    input_device_options=None,
    iterations=10,
):
    op = copy.deepcopy(op)
    op.device_option.CopyFrom(device_option)
    net = caffe2_pb2.NetDef()
    net.op.extend([op])
    net.name = op.name if op.name else "test"

    with temp_workspace():
        _input_device_options = input_device_options or \
            core.InferOpBlobDevicesAsDict(op)[0]
        for (n, b) in zip(op.input, inputs):
            workspace.FeedBlob(
                n,
                b,
                device_option=_input_device_options.get(n, device_option)
            )
        workspace.CreateNet(net)
        ret = workspace.BenchmarkNet(net.name, 1, iterations, True)
    return ret
Esempio n. 3
0
    def assertRunOpRaises(
            self,
            device_option,
            op,
            inputs,
            input_device_options=None,
            exception=(Exception, ),
            regexp=None,
    ):
        op = copy.deepcopy(op)
        op.device_option.CopyFrom(device_option)

        with temp_workspace():
            _input_device_options = input_device_options or \
                core.InferOpBlobDevicesAsDict(op)[0]
            for (n, b) in zip(op.input, inputs):
                workspace.FeedBlob(n,
                                   b,
                                   device_option=_input_device_options.get(
                                       n, device_option))
            if regexp is None:
                self.assertRaises(exception, workspace.RunOperatorOnce, op)
            else:
                six.assertRaisesRegex(self, exception, regexp,
                                      workspace.RunOperatorOnce, op)
Esempio n. 4
0
    def assertValidationChecks(
        self,
        device_option,
        op,
        inputs,
        validator,
        input_device_options=None,
        as_kwargs=True,
        init_net=None,
    ):
        if as_kwargs:
            assert len(set(list(op.input) + list(op.output))) == \
                len(op.input) + len(op.output), \
                "in-place ops are not supported in as_kwargs mode"
        op = copy.deepcopy(op)
        op.device_option.CopyFrom(device_option)

        with temp_workspace():
            _input_device_options = input_device_options or \
                core.InferOpBlobDevicesAsDict(op)[0]
            for (n, b) in zip(op.input, inputs):
                workspace.FeedBlob(n,
                                   b,
                                   device_option=_input_device_options.get(
                                       n, device_option))
            if init_net:
                workspace.RunNetOnce(init_net)
            workspace.RunOperatorOnce(op)
            outputs = [workspace.FetchBlob(n) for n in op.output]
            if as_kwargs:
                validator(**dict(
                    zip(list(op.input) + list(op.output), inputs + outputs)))
            else:
                validator(inputs=inputs, outputs=outputs)
Esempio n. 5
0
    def assertReferenceChecks(
        self,
        device_option,
        op,
        inputs,
        reference,
        input_device_options=None,
        threshold=1e-4,
        output_to_grad=None,
        grad_reference=None,
        atol=None,
        outputs_to_check=None,
        ensure_outputs_are_inferred=False,
    ):
        """
        This runs the reference Python function implementation
        (effectively calling `reference(*inputs)`, and compares that
        to the output of output, with an absolute/relative tolerance
        given by the `threshold` parameter.

        Useful for checking the implementation matches the Python
        (typically NumPy) implementation of the same functionality.

        Usage example:

            @given(X=hu.tensor(), inplace=st.booleans(), **hu.gcs)
            def test_softsign(self, X, inplace, gc, dc):
                op = core.CreateOperator(
                    "Softsign", ["X"], ["X" if inplace else "Y"])

                def softsign(X):
                    return (X / (1 + np.abs(X)),)

                self.assertReferenceChecks(gc, op, [X], softsign)
        """
        op = copy.deepcopy(op)
        op.device_option.CopyFrom(device_option)

        with temp_workspace():
            if (len(op.input) > len(inputs)):
                raise ValueError(
                    'must supply an input for each input on the op: %s vs %s' %
                    (op.input, inputs))
            _input_device_options = input_device_options or \
                core.InferOpBlobDevicesAsDict(op)[0]
            for (n, b) in zip(op.input, inputs):
                workspace.FeedBlob(
                    n,
                    b,
                    device_option=_input_device_options.get(n, device_option)
                )
            net = core.Net("opnet")
            net.Proto().op.extend([op])
            test_shape_inference = False
            try:
                (shapes, types) = workspace.InferShapesAndTypes([net])
                test_shape_inference = True
            except RuntimeError as e:
                # Temporarily catch runtime errors when inferring shape
                # and type info
                logging.warning(str(e))
                if os.getenv('CAFFE2_ASSERT_SHAPEINFERENCE') == '1' or ensure_outputs_are_inferred:
                    raise e
            workspace.RunNetOnce(net)
            reference_outputs = reference(*inputs)
            if not (isinstance(reference_outputs, tuple) or
                    isinstance(reference_outputs, list)):
                raise RuntimeError(
                    "You are providing a wrong reference implementation. A "
                    "proper one should return a tuple/list of numpy arrays.")
            if not outputs_to_check:
                self.assertEqual(len(reference_outputs), len(op.output))
                outputs_to_check = list(range(len(op.output)))
            outs = []
            for (output_index, ref) in zip(outputs_to_check, reference_outputs):
                output_blob_name = op.output[output_index]
                output = workspace.FetchBlob(output_blob_name)
                if output.dtype.kind in ('S', 'O'):
                    np.testing.assert_array_equal(output, ref)
                else:
                    if atol is None:
                        atol = threshold
                    np.testing.assert_allclose(
                        output, ref, atol=atol, rtol=threshold,
                        err_msg=(
                            'Output {0} is not matching the reference'.format(
                                output_blob_name,
                            )),
                    )
                if test_shape_inference:
                    self._assertInferTensorChecks(
                        output_blob_name, shapes, types, output,
                        ensure_output_is_inferred=ensure_outputs_are_inferred)
                outs.append(output)
            if grad_reference is not None:
                assert output_to_grad is not None, \
                    "If grad_reference is set," \
                    "output_to_grad has to be set as well"

                with core.DeviceScope(device_option):
                    self._assertGradReferenceChecks(
                        op, inputs, reference_outputs,
                        output_to_grad, grad_reference,
                        threshold=threshold)

            return outs
    def CheckSimple(self,
                    op,
                    inputs,
                    input_to_check,
                    outputs_with_grads,
                    grad_ops=None,
                    input_device_options=None):
        """Checks the operator in a very simple fashion by stacking a sum of
        squares on the top.

        Inputs:
          op: the operator to be checked.
          inputs: the input data in numpy arrays.
          input_to_check: an index specifying which input blob we should
              check.
          outputs_with_grads: indices specifying which output blobs will we
              need to check gradients with. For these outputs, we will collect a
              squared sum and also feed in their gradients.
          grad_operator: the gradient operator. If not given, we will get the
              gradient operator from the gradient registry.
          input_device_options: an optional mapping from input names to
              DeviceOptions (to override the default DeviceOption)
        Outputs:
          boolean: True if it passes, False if it does not pass.
        """
        # Entering the checker workspace
        old_ws_name = workspace.CurrentWorkspace()
        if self._workspace_name != old_ws_name:
            workspace.SwitchWorkspace(self._workspace_name, True)

        op.device_option.CopyFrom(self._device_option)
        if grad_ops is None:
            # TODO(jiayq): use the gradient registration instead of the old
            # hack.
            grad_ops, g_input = core.GradientRegistry.GetGradientForOp(
                op, [s + '_grad' for s in op.output])

        dims_to_check = inputs[input_to_check].size
        _input_device_options = input_device_options or \
            core.InferOpBlobDevicesAsDict(op)[0]
        # First, feed in the input.
        for i, arr in enumerate(inputs):
            workspace.FeedBlob(
                op.input[i], arr,
                _input_device_options.get(op.input[i], self._device_option))

        # Get the loss and gradient for the original.
        input_name = op.input[input_to_check]
        grad_name = g_input[input_to_check]
        loss, grad = self.GetLossAndGrad(op, grad_ops, inputs[input_to_check],
                                         input_name, grad_name,
                                         outputs_with_grads)
        grad_estimate = np.zeros_like(inputs[input_to_check])
        if grad_estimate.shape != grad.shape:
            raise Exception(
                "Mismatched gradient shapes: estimated ({}), grad ({})".format(
                    grad_estimate.shape, grad.shape))

        for current_dim in range(dims_to_check):
            # Positive gradient
            inputs[input_to_check].flat[current_dim] += self._stepsize
            pos_loss, _ = self.GetLossAndGrad(op, grad_ops,
                                              inputs[input_to_check],
                                              input_name, grad_name,
                                              outputs_with_grads)
            # Negative gradient
            inputs[input_to_check].flat[current_dim] -= self._stepsize * 2
            neg_loss, _ = self.GetLossAndGrad(op, grad_ops,
                                              inputs[input_to_check],
                                              input_name, grad_name,
                                              outputs_with_grads)
            # Recover the value
            inputs[input_to_check].flat[current_dim] += self._stepsize
            grad_estimate.flat[current_dim] = (pos_loss -
                                               neg_loss) / self._stepsize / 2
        # Now, check correctness
        fail_mat = ~np.isclose(
            grad, grad_estimate, atol=self._threshold, rtol=self._threshold)
        if np.any(fail_mat):
            idx = np.flatnonzero(fail_mat)
            print('Failed. [idx, grad, grad_estimate] are:')
            print(np.vstack([idx, grad.flat[idx], grad_estimate.flat[idx]]).T)
            ret = False
        else:
            ret = True
        # After finishing, cleaning up things.
        if self._workspace_name != old_ws_name:
            # We reset the workspace to make sure everything intermediate is
            # cleaned up. Note that there is no need to delete a workspace -
            # when empty it takes a very limited amount of memory.
            workspace.ResetWorkspace()
            workspace.SwitchWorkspace(old_ws_name)
        return ret, grad, grad_estimate
Esempio n. 7
0
    def CheckSimple(
        self,
        op,
        inputs,
        input_to_check,
        outputs_with_grads,
        grad_ops=None,
        input_device_options=None,
        ensure_outputs_are_inferred=False,
    ):
        """Checks the operator in a very simple fashion by stacking a sum of
        squares on the top.

        Inputs:
          op: the operator to be checked.
          inputs: the input data in numpy arrays.
          input_to_check: an index specifying which input blob we should
              check.
          outputs_with_grads: indices specifying which output blobs will we
              need to check gradients with. For these outputs, we will collect a
              squared sum and also feed in their gradients.
          grad_operator: the gradient operator. If not given, we will get the
              gradient operator from the gradient registry.
          input_device_options: an optional mapping from input names to
              DeviceOptions (to override the default DeviceOption)
          ensure_outputs_are_inferred: if set will assert that the gradient output
              shapes matches the inferred shapes
        Outputs:
          boolean: True if it passes, False if it does not pass.
        """
        # Entering the checker workspace
        old_ws_name = workspace.CurrentWorkspace()
        if self._workspace_name != old_ws_name:
            workspace.SwitchWorkspace(self._workspace_name, True)

        op.device_option.CopyFrom(self._device_option)
        if grad_ops is None:
            # TODO(jiayq): use the gradient registration instead of the old
            # hack.
            grad_ops, g_input = getGradientForOp(op)


        _input_device_options = input_device_options or \
            core.InferOpBlobDevicesAsDict(op)[0]
        # First, feed in the input.
        for i, arr in enumerate(inputs):
            workspace.FeedBlob(
                op.input[i], arr,
                _input_device_options.get(
                    op.input[i], self._device_option))

        # Get the loss and gradient for the original.
        grad_name = g_input[input_to_check]
        loss, grad = self.GetLossAndGrad(
            op, grad_ops, inputs, op.input, input_to_check, grad_name,
            outputs_with_grads,
        )
        grad_estimate = np.zeros_like(inputs[input_to_check])
        if grad_estimate.shape != grad.shape:
            raise Exception(
                "Mismatched gradient shapes: estimated ({}), grad ({})".format(
                    grad_estimate.shape, grad.shape))

        if ensure_outputs_are_inferred:
            self._assertInferTensorChecks(op, grad_ops)

        full_grad_check = os.getenv('CAFFE2_FULL_GRAD_CHECK') == '1'

        dims_to_check = inputs[input_to_check].size
        for current_dim in range(dims_to_check):
            # Grad check is very expensive (as it involves running the op from
            # scratch for each of the input tensor elements). Thus, let's
            # run it by default only on a small subset of dimensions. Here we
            # apply very scientific approach: the first and the last 3 elements
            # of each tensor. Pass CAFFE2_FULL_GRAD_CHECK=1 env var to enable
            # the full check
            if not full_grad_check and current_dim >= 3 and \
                    current_dim + 3 < dims_to_check:
                grad_estimate.flat[current_dim] = grad.flat[current_dim]
                continue
            # Positive gradient
            inputs[input_to_check].flat[current_dim] += self._stepsize
            pos_loss, _ = self.GetLossAndGrad(
                op, grad_ops, inputs, op.input, input_to_check, grad_name,
                outputs_with_grads
            )
            # Negative gradient
            inputs[input_to_check].flat[current_dim] -= self._stepsize * 2
            neg_loss, _ = self.GetLossAndGrad(
                op, grad_ops, inputs, op.input, input_to_check, grad_name,
                outputs_with_grads
            )
            # Recover the value
            inputs[input_to_check].flat[current_dim] += self._stepsize
            grad_estimate.flat[current_dim] = (
                pos_loss - neg_loss) / self._stepsize / 2
        # Now, check correctness
        fail_mat = ~np.isclose(
            grad, grad_estimate, atol=self._threshold, rtol=self._threshold)
        if np.any(fail_mat):
            idx = np.flatnonzero(fail_mat)
            print('Failed. [idx, grad, grad_estimate] are:')
            print(np.vstack([idx, grad.flat[idx], grad_estimate.flat[idx]]).T)
            ret = False
        else:
            ret = True
        # After finishing, cleaning up things.
        if self._workspace_name != old_ws_name:
            # We reset the workspace to make sure everything intermediate is
            # cleaned up. Note that there is no need to delete a workspace -
            # when empty it takes a very limited amount of memory.
            workspace.ResetWorkspace()
            workspace.SwitchWorkspace(old_ws_name)
        return ret, grad, grad_estimate