def export_to_caffe2( self, workspace: core.workspace, init_net: core.Net, predict_net: core.Net, model_out: torch.Tensor, output_name: str, ) -> List[core.BlobReference]: """See `OutputLayerBase.export_to_caffe2()`.""" probability_out = predict_net.Softmax(output_name, axis=model_out.dim() - 1) return OutputLayerUtils.gen_additional_blobs( predict_net, probability_out, model_out, output_name, self.target_names )
def export_to_caffe2( self, workspace: core.workspace, init_net: core.Net, predict_net: core.Net, model_out: torch.Tensor, output_name: str, ) -> List[core.BlobReference]: prob_out = predict_net.Softmax(output_name, axis=model_out.dim() - 1) # prepend an underscore to target_names to avoid conflicts between # existing cell names and target names edited_target_names = [f"_{name}" for name in self.target_names] return OutputLayerUtils.gen_additional_blobs(predict_net, prob_out, model_out, output_name, edited_target_names)
def export_to_caffe2( self, workspace: core.workspace, init_net: core.Net, predict_net: core.Net, model_out: torch.Tensor, output_name: str, ) -> List[core.BlobReference]: """ Exports the doc classification layer to Caffe2. See `OutputLayerBase.export_to_caffe2()` for details. """ if isinstance(self.loss_fn, BinaryCrossEntropyLoss): probability_out = predict_net.Sigmoid(output_name) else: probability_out = predict_net.Softmax(output_name, axis=model_out.dim() - 1) return OutputLayerUtils.gen_additional_blobs( predict_net, probability_out, model_out, output_name, self.target_names )