Esempio n. 1
0
def QdJoint2(qi, qiDot, u_bar_iP, u_bar_jP, i, j):
    id = l2i(i, "theta")
    jd = l2i(j, "theta")
    Qda = np.square(float(qiDot[id])) * np.dot(A_i(qi[id]), u_bar_iP)
    Qdb = np.square(float(qiDot[jd])) * np.dot(A_i(qi[jd]), u_bar_jP)
    Qd_RJ2 = Qda - Qdb
    return Qd_RJ2
Esempio n. 2
0
def torDamp(cr, qiDot, i, j):
    omegai = qiDot[l2i(i, "theta")]
    omegaj = qiDot[l2i(j, "theta")]
    deltaOmega = omegai - omegaj
    Q_DampThetai = -cr * deltaOmega
    Q_DampThetaj = cr * deltaOmega

    return Q_DampThetai, Q_DampThetaj
Esempio n. 3
0
def torSpring(kr, qi, i, j, theta0):
    thetai = qi[l2i(i, "theta")]
    thetaj = qi[l2i(j, "theta")]
    deltaTheta = thetai - thetaj
    Q_SpringThetai = -kr * (deltaTheta - theta0)
    Q_SpringThetaj = kr * (deltaTheta - theta0)

    return Q_SpringThetai, Q_SpringThetaj
Esempio n. 4
0
def systemEquation(t, Cq, qi, qiDot):
    # Construct MCq matrix (MASS MODULE)

    massAugmented = np.zeros((7, 7))
    massAugmented[0:3, 0:3] = massRR
    Gbar = calMod.GBarMat(qi[l2i(1, "theta0")], qi[l2i(1, "theta1")],
                          qi[l2i(1, "theta2")], qi[l2i(1, "theta3")])

    massAugmented[3:7, 3:7] = np.transpose(Gbar) * Itheta2 * Gbar

    # Construct QeQd vector (FORCE MODULE)
    Qe = np.zeros((7, 1), dtype=float)

    # External Force from Weight
    Qe[l2i(1, "y")] = -mass_body * gravity

    # External Force from spring
    # -joint B (link 1&2)
    QSpring1B, QSpring2B = fMod.torSpring(krB, qi, 1, 2, 0)
    # -joint C (link 2&3)
    QSpring2C, QSpring3C = fMod.torSpring(krC, qi, 2, 3, 0)

    # External Force from damper
    # -joint B (link 1&2)
    QDamp1B, QDamp2B = fMod.torDamp(crB, qiDot, 1, 2)
    # -joint C (link 2&3)
    QDamp2C, QDamp3C = fMod.torDamp(crC, qiDot, 2, 3)

    Qe[l2i(1, "theta")] = QSpring1B + QDamp1B
    Qe[l2i(2, "theta")] = QSpring2B + QSpring2C + QDamp2B + QDamp2C
    Qe[l2i(3, "theta")] = QSpring3C + QDamp3C

    Qd = cnMod.QdEP1(qi, 1)

    QeAug = np.concatenate((Qe, Qd), axis=0)  #15x1
    mass_MatInverse = np.linalg.inv(massAugmented)
    qiDotDot_lamda = np.dot(mass_MatInverse, QeAug)
    return qiDotDot_lamda
Esempio n. 5
0
def mainProg():
    global qi, qiDot, qiDotDot_lamda
    timeNow = timeStart
    iter = 0

    for timeID in range(np.size(time)):
        max_iteration = 50
        count = 0
        delta_qi_norm = 1

        while delta_qDep_norm > epsilon:

            Cq, Cq_dep, Cq_indep, constraintVect = config(qi)
            q_dep = np.concatenate((qi[0:2], qi[3:5]), axis=0)  # position
            q_depNew, delta_qDep_norm = conMod.positionAnalysis(
                constraintVect, Cq_dep, q_dep)
            count = count + 1
            if (delta_qDep_norm < epsilon) or (count > max_iteration):
                break
        # e. Find dependent acceleration (indep acc at the same time)
        qiDotDot_lamda = systemEquation(0, Cq, qi, qiDot)

        # f. Store everything
        q_allTime[timeID, :] = qi.T
        v_allTime[timeID, :] = qiDot.T
        a_allTime[timeID, :] = qiDotDot_lamda[0:n].T

        # g. Calculate q, qdot, qdotdot independent @ t+1
        qi, qiDot = rungeKutta4_AtTimeNow(qi, qiDot, systemEquation, stepSize,
                                          timeNow)
        iter = iter + 1
        timeNow = timeNow + stepSize

    plt.figure(1)
    plt.plot(time, q_allTime[:, l2i(1, "y")])
    plt.title('y')
    plt.ylabel('position y')
    plt.xlabel('time [s]')
    plt.grid(True)
    plt.show()
Esempio n. 6
0
def rungeKutta4_AtTimeNow(qi, qiDot, systemFunction, stepSize, timeNow):
    # This function works with ANY number of DOF
    x = np.array([
        qi[l2i(1, "x")], qi[l2i(1, "y")], qi[l2i(1, "z")], qi[l2i(1,
                                                                  "theta0")],
        qi[l2i(1, "theta1")], qi[l2i(1, "theta2")], qi[l2i(1, "theta3")]
    ])

    xDot = np.array([
        qiDot[l2i(1, "x")], qiDot[l2i(1, "y")], qiDot[l2i(1, "z")],
        qiDot[l2i(1, "theta0")], qiDot[l2i(1, "theta1")],
        qiDot[l2i(1, "theta2")], qiDot[l2i(1, "theta3")]
    ])

    y = np.concatenate((x, xDot), axis=0)
    numberOfDOF = int(np.size(y) / 2)

    # RungeKutta4
    t1 = timeNow
    Cq = config(qi)
    f_1 = systemFunction(t1, Cq, qi, qiDot)
    k1 = np.zeros((np.size(y), 1))
    for x in range(numberOfDOF):
        k1[x] = y[x + numberOfDOF]
        k1[x + numberOfDOF] = f_1[l2i(x + 1, "theta")]

    t2 = t1 + 0.5 * stepSize
    y2 = y + 0.5 * k1 * stepSize
    for i in range(numberOfDOF):
        qi[l2i(i + 1, "theta")] = y2[i]
        qiDot[l2i(i + 1, "theta")] = y2[i + numberOfDOF]
    Cq = config(qi)
    f_2 = systemFunction(t2, Cq, qi, qiDot)
    k2 = np.zeros((np.size(y), 1))
    for x in range(numberOfDOF):
        k2[x] = y2[x + numberOfDOF]
        k2[x + numberOfDOF] = f_2[l2i(x + 1, "theta")]

    t3 = t1 + 0.5 * stepSize
    y3 = y + 0.5 * k2 * stepSize
    for i in range(numberOfDOF):
        qi[l2i(i + 1, "theta")] = y3[i]
        qiDot[l2i(i + 1, "theta")] = y3[i + numberOfDOF]
    Cq = config(qi)
    f_3 = systemFunction(t3, Cq, qi, qiDot)
    k3 = np.zeros((np.size(y), 1))
    for x in range(numberOfDOF):
        k3[x] = y3[x + numberOfDOF]
        k3[x + numberOfDOF] = f_3[l2i(x + 1, "theta")]

    t4 = t1 + stepSize
    y4 = y + k3 * stepSize
    for i in range(numberOfDOF):
        qi[l2i(i + 1, "theta")] = y4[i]
        qiDot[l2i(i + 1, "theta")] = y4[i + numberOfDOF]
    Cq = config(qi)
    f_4 = systemFunction(t4, Cq, qi, qiDot)
    k4 = np.zeros((np.size(y), 1))
    for x in range(numberOfDOF):
        k4[x] = y4[x + numberOfDOF]
        k4[x + numberOfDOF] = f_4[l2i(x + 1, "theta")]

    RKFunct = (k1 + 2 * k2 + 2 * k3 + k4) / 6

    yNew = y + stepSize * RKFunct
    for i in range(numberOfDOF):
        qi[l2i(i + 1, "theta")] = yNew[i]
        qiDot[l2i(i + 1, "theta")] = yNew[i + numberOfDOF]

    return qi, qiDot
Esempio n. 7
0
# Generalized coordinates
qi = np.zeros((7, 1))  # Gen coordinate with euler param

# POINTS OF INTEREST, LOCAL JOINTS
uBar_FLW = np.array([[axleDistance / 2], [-bodyHeight / 2], [-axleLength / 2]])
uBar_FRW = np.array([[axleDistance / 2], [-bodyHeight / 2], [axleLength / 2]])
uBar_RLW = np.array([[-axleDistance / 2], [-bodyHeight / 2],
                     [-axleLength / 2]])
uBar_RRW = np.array([[-axleDistance / 2], [-bodyHeight / 2], [axleLength / 2]])

n, nc = 7, 1  # Generalized coordinates, number of Constraints
qi = np.zeros((n, 1))  # gen. position
qiDot = np.zeros((n, 1))  # gen. velocity
qiDotDot_lamda = np.zeros((n + nc, 1))  # gen. acceleration

qi[l2i(1, "y")] = 0.3  # [m]

# Constrained equation
q_allTime = np.zeros((np.size(time), n))
v_allTime = np.zeros((np.size(time), n))
a_allTime = np.zeros((np.size(time), n))


def mainProg():
    global qi, qiDot, qiDotDot_lamda
    timeNow = timeStart
    iter = 0

    for timeID in range(np.size(time)):
        max_iteration = 50
        count = 0
Esempio n. 8
0
def QdJoint1(qi, qiDot, u_bar_iP, i):
    id = l2i(i, "theta")
    Qd_RJ1 = np.square(float(qiDot[id])) * np.dot(A_i(qi[id]), u_bar_iP)
    return Qd_RJ1
Esempio n. 9
0
def QdEulPar1(qi, i):
    id = l2i(i, "t0")
    t0, t1, t2, t3 = qi[id], qi[id + 1], qi[id + 2], qi[id + 3]
    Qd_EP1 = -(2 * t0**2 + 2 * t1**1 + 2 * t2**2 + 2 * t3**2)

    return Qd_EP1
Esempio n. 10
0
def jacobianMatrix(qi, i):
    id = l2i(i, "t0")
    t0, t1, t2, t3 = qi[id], qi[id + 1], qi[id + 2], qi[id + 3]
    Cq = np.array([[0, 0, 0, 2 * t0, 2 * t1, 2 * t2, 2 * t3]])

    return Cq
Esempio n. 11
0
def constraintEquation(qi, i):
    id = l2i(i, "t0")
    t0, t1, t2, t3 = qi[id], qi[id + 1], qi[id + 2], qi[id + 3]
    constraintVector = sq(t0) + sq(t1) + sq(t2) + sq(t3) - 1

    return constraintVector